
Requests Documentation
Release 2.2.1

Kenneth Reitz

January 15, 2016

Contents

1 Testimonials 3

2 Feature Support 5

3 User Guide 7
3.1 Introduction . 7
3.2 Installation . 8
3.3 Quickstart . 9
3.4 Advanced Usage . 15
3.5 Authentication . 25

4 Community Guide 29
4.1 Frequently Asked Questions . 29
4.2 Integrations . 30
4.3 Articles & Talks . 30
4.4 Support . 30
4.5 Community Updates . 31
4.6 Software Updates . 31

5 API Documentation 49
5.1 Developer Interface . 49

6 Contributor Guide 69
6.1 Development Philosophy . 69
6.2 How to Help . 70
6.3 Authors . 71

Python Module Index 77

i

ii

Requests Documentation, Release 2.2.1

Release v2.2.1. (Installation)

Requests is an Apache2 Licensed HTTP library, written in Python, for human beings.

Python’s standard urllib2 module provides most of the HTTP capabilities you need, but the API is thoroughly broken.
It was built for a different time — and a different web. It requires an enormous amount of work (even method overrides)
to perform the simplest of tasks.

Things shouldn’t be this way. Not in Python.

>>> r = requests.get('https://api.github.com/user', auth=('user', 'pass'))
>>> r.status_code
200
>>> r.headers['content-type']
'application/json; charset=utf8'
>>> r.encoding
'utf-8'
>>> r.text
u'{"type":"User"...'
>>> r.json()
{u'private_gists': 419, u'total_private_repos': 77, ...}

See similar code, without Requests.

Requests takes all of the work out of Python HTTP/1.1 — making your integration with web services seamless.
There’s no need to manually add query strings to your URLs, or to form-encode your POST data. Keep-alive and
HTTP connection pooling are 100% automatic, powered by urllib3, which is embedded within Requests.

Contents 1

https://gist.github.com/973705
https://github.com/shazow/urllib3

Requests Documentation, Release 2.2.1

2 Contents

CHAPTER 1

Testimonials

Her Majesty’s Government, Amazon, Google, Twilio, Runscope, Mozilla, Heroku, PayPal, NPR, Obama for Amer-
ica, Transifex, Native Instruments, The Washington Post, Twitter, SoundCloud, Kippt, Readability, and Federal US
Institutions use Requests internally. It has been downloaded over 8,000,000 times from PyPI.

Armin Ronacher Requests is the perfect example how beautiful an API can be with the right level of abstraction.

Matt DeBoard I’m going to get @kennethreitz’s Python requests module tattooed on my body, somehow. The whole
thing.

Daniel Greenfeld Nuked a 1200 LOC spaghetti code library with 10 lines of code thanks to @kennethreitz’s request
library. Today has been AWESOME.

Kenny Meyers Python HTTP: When in doubt, or when not in doubt, use Requests. Beautiful, simple, Pythonic.

3

Requests Documentation, Release 2.2.1

4 Chapter 1. Testimonials

CHAPTER 2

Feature Support

Requests is ready for today’s web.

• International Domains and URLs

• Keep-Alive & Connection Pooling

• Sessions with Cookie Persistence

• Browser-style SSL Verification

• Basic/Digest Authentication

• Elegant Key/Value Cookies

• Automatic Decompression

• Unicode Response Bodies

• Multipart File Uploads

• Connection Timeouts

• .netrc support

• Python 2.6—3.3

• Thread-safe.

5

Requests Documentation, Release 2.2.1

6 Chapter 2. Feature Support

CHAPTER 3

User Guide

This part of the documentation, which is mostly prose, begins with some background information about Requests,
then focuses on step-by-step instructions for getting the most out of Requests.

3.1 Introduction

3.1.1 Philosophy

Requests was developed with a few PEP 20 idioms in mind.

1. Beautiful is better than ugly.

2. Explicit is better than implicit.

3. Simple is better than complex.

4. Complex is better than complicated.

5. Readability counts.

All contributions to Requests should keep these important rules in mind.

3.1.2 Apache2 License

A large number of open source projects you find today are GPL Licensed. While the GPL has its time and place, it
should most certainly not be your go-to license for your next open source project.

A project that is released as GPL cannot be used in any commercial product without the product itself also being
offered as open source.

The MIT, BSD, ISC, and Apache2 licenses are great alternatives to the GPL that allow your open-source software to
be used freely in proprietary, closed-source software.

Requests is released under terms of Apache2 License.

3.1.3 Requests License

Copyright 2014 Kenneth Reitz

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

7

https://www.python.org/dev/peps/pep-0020
http://www.opensource.org/licenses/gpl-license.php
http://opensource.org/licenses/Apache-2.0

Requests Documentation, Release 2.2.1

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the Li-
cense is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

3.2 Installation

This part of the documentation covers the installation of Requests. The first step to using any software package is
getting it properly installed.

3.2.1 Distribute & Pip

Installing Requests is simple with pip:

$ pip install requests

or, with easy_install:

$ easy_install requests

But, you really shouldn’t do that.

3.2.2 Cheeseshop (PyPI) Mirror

If the Cheeseshop (a.k.a. PyPI) is down, you can also install Requests from one of the mirrors. Crate.io is one of them:

$ pip install -i http://simple.crate.io/ requests

3.2.3 Get the Code

Requests is actively developed on GitHub, where the code is always available.

You can either clone the public repository:

git clone git://github.com/kennethreitz/requests.git

Download the tarball:

$ curl -OL https://github.com/kennethreitz/requests/tarball/master

Or, download the zipball:

$ curl -OL https://github.com/kennethreitz/requests/zipball/master

Once you have a copy of the source, you can embed it in your Python package, or install it into your site-packages
easily:

$ python setup.py install

8 Chapter 3. User Guide

http://www.apache.org/licenses/LICENSE-2.0
http://www.pip-installer.org/
http://pypi.python.org/pypi/setuptools
http://www.pip-installer.org/en/latest/other-tools.html#pip-compared-to-easy-install
http://crate.io
https://github.com/kennethreitz/requests
https://github.com/kennethreitz/requests/tarball/master
https://github.com/kennethreitz/requests/zipball/master

Requests Documentation, Release 2.2.1

3.3 Quickstart

Eager to get started? This page gives a good introduction in how to get started with Requests. This assumes you
already have Requests installed. If you do not, head over to the Installation section.

First, make sure that:

• Requests is installed

• Requests is up-to-date

Let’s get started with some simple examples.

3.3.1 Make a Request

Making a request with Requests is very simple.

Begin by importing the Requests module:

>>> import requests

Now, let’s try to get a webpage. For this example, let’s get GitHub’s public timeline

>>> r = requests.get('https://github.com/timeline.json')

Now, we have a Response object called r. We can get all the information we need from this object.

Requests’ simple API means that all forms of HTTP request are as obvious. For example, this is how you make an
HTTP POST request:

>>> r = requests.post("http://httpbin.org/post")

Nice, right? What about the other HTTP request types: PUT, DELETE, HEAD and OPTIONS? These are all just as
simple:

>>> r = requests.put("http://httpbin.org/put")
>>> r = requests.delete("http://httpbin.org/delete")
>>> r = requests.head("http://httpbin.org/get")
>>> r = requests.options("http://httpbin.org/get")

That’s all well and good, but it’s also only the start of what Requests can do.

3.3.2 Passing Parameters In URLs

You often want to send some sort of data in the URL’s query string. If you were constructing the URL by hand,
this data would be given as key/value pairs in the URL after a question mark, e.g. httpbin.org/get?key=val.
Requests allows you to provide these arguments as a dictionary, using the params keyword argument. As an example,
if you wanted to pass key1=value1 and key2=value2 to httpbin.org/get, you would use the following
code:

>>> payload = {'key1': 'value1', 'key2': 'value2'}
>>> r = requests.get("http://httpbin.org/get", params=payload)

You can see that the URL has been correctly encoded by printing the URL:

>>> print(r.url)
http://httpbin.org/get?key2=value2&key1=value1

Note that any dictionary key whose value is None will not be added to the URL’s query string.

3.3. Quickstart 9

Requests Documentation, Release 2.2.1

3.3.3 Response Content

We can read the content of the server’s response. Consider the GitHub timeline again:

>>> import requests
>>> r = requests.get('https://github.com/timeline.json')
>>> r.text
u'[{"repository":{"open_issues":0,"url":"https://github.com/...

Requests will automatically decode content from the server. Most unicode charsets are seamlessly decoded.

When you make a request, Requests makes educated guesses about the encoding of the response based on the HTTP
headers. The text encoding guessed by Requests is used when you access r.text. You can find out what encoding
Requests is using, and change it, using the r.encoding property:

>>> r.encoding
'utf-8'
>>> r.encoding = 'ISO-8859-1'

If you change the encoding, Requests will use the new value of r.encodingwhenever you call r.text. You might
want to do this in any situation where you can apply special logic to work out what the encoding of the content will
be. For example, HTTP and XML have the ability to specify their encoding in their body. In situations like this, you
should use r.content to find the encoding, and then set r.encoding. This will let you use r.text with the
correct encoding.

Requests will also use custom encodings in the event that you need them. If you have created your own encoding
and registered it with the codecs module, you can simply use the codec name as the value of r.encoding and
Requests will handle the decoding for you.

3.3.4 Binary Response Content

You can also access the response body as bytes, for non-text requests:

>>> r.content
b'[{"repository":{"open_issues":0,"url":"https://github.com/...

The gzip and deflate transfer-encodings are automatically decoded for you.

For example, to create an image from binary data returned by a request, you can use the following code:

>>> from PIL import Image
>>> from StringIO import StringIO
>>> i = Image.open(StringIO(r.content))

3.3.5 JSON Response Content

There’s also a builtin JSON decoder, in case you’re dealing with JSON data:

>>> import requests
>>> r = requests.get('https://github.com/timeline.json')
>>> r.json()
[{u'repository': {u'open_issues': 0, u'url': 'https://github.com/...

In case the JSON decoding fails, r.json raises an exception. For example, if the response gets a 401 (Unauthorized),
attempting r.json raises ValueError: No JSON object could be decoded

10 Chapter 3. User Guide

Requests Documentation, Release 2.2.1

3.3.6 Raw Response Content

In the rare case that you’d like to get the raw socket response from the server, you can access r.raw. If you want to
do this, make sure you set stream=True in your initial request. Once you do, you can do this:

>>> r = requests.get('https://github.com/timeline.json', stream=True)
>>> r.raw
<requests.packages.urllib3.response.HTTPResponse object at 0x101194810>
>>> r.raw.read(10)
'\x1f\x8b\x08\x00\x00\x00\x00\x00\x00\x03'

In general, however, you should use a pattern like this to save what is being streamed to a file:

with open(filename, 'wb') as fd:
for chunk in r.iter_content(chunk_size):

fd.write(chunk)

Using Response.iter_content will handle a lot of what you would otherwise have to handle when using
Response.raw directly. When streaming a download, the above is the preferred and recommended way to retrieve
the content.

3.3.7 Custom Headers

If you’d like to add HTTP headers to a request, simply pass in a dict to the headers parameter.

For example, we didn’t specify our content-type in the previous example:

>>> import json
>>> url = 'https://api.github.com/some/endpoint'
>>> payload = {'some': 'data'}
>>> headers = {'content-type': 'application/json'}

>>> r = requests.post(url, data=json.dumps(payload), headers=headers)

3.3.8 More complicated POST requests

Typically, you want to send some form-encoded data — much like an HTML form. To do this, simply pass a dictionary
to the data argument. Your dictionary of data will automatically be form-encoded when the request is made:

>>> payload = {'key1': 'value1', 'key2': 'value2'}
>>> r = requests.post("http://httpbin.org/post", data=payload)
>>> print r.text
{

...
"form": {
"key2": "value2",
"key1": "value1"

},
...

}

There are many times that you want to send data that is not form-encoded. If you pass in a string instead of a dict,
that data will be posted directly.

For example, the GitHub API v3 accepts JSON-Encoded POST/PATCH data:

3.3. Quickstart 11

Requests Documentation, Release 2.2.1

>>> import json
>>> url = 'https://api.github.com/some/endpoint'
>>> payload = {'some': 'data'}

>>> r = requests.post(url, data=json.dumps(payload))

3.3.9 POST a Multipart-Encoded File

Requests makes it simple to upload Multipart-encoded files:

>>> url = 'http://httpbin.org/post'
>>> files = {'file': open('report.xls', 'rb')}

>>> r = requests.post(url, files=files)
>>> r.text
{

...
"files": {
"file": "<censored...binary...data>"

},
...

}

You can set the filename explicitly:

>>> url = 'http://httpbin.org/post'
>>> files = {'file': ('report.xls', open('report.xls', 'rb'))}

>>> r = requests.post(url, files=files)
>>> r.text
{

...
"files": {
"file": "<censored...binary...data>"

},
...

}

If you want, you can send strings to be received as files:

>>> url = 'http://httpbin.org/post'
>>> files = {'file': ('report.csv', 'some,data,to,send\nanother,row,to,send\n')}

>>> r = requests.post(url, files=files)
>>> r.text
{

...
"files": {
"file": "some,data,to,send\\nanother,row,to,send\\n"

},
...

}

3.3.10 Response Status Codes

We can check the response status code:

12 Chapter 3. User Guide

Requests Documentation, Release 2.2.1

>>> r = requests.get('http://httpbin.org/get')
>>> r.status_code
200

Requests also comes with a built-in status code lookup object for easy reference:

>>> r.status_code == requests.codes.ok
True

If we made a bad request (a 4XX client error or 5XX server error response), we can raise it with
Response.raise_for_status():

>>> bad_r = requests.get('http://httpbin.org/status/404')
>>> bad_r.status_code
404

>>> bad_r.raise_for_status()
Traceback (most recent call last):

File "requests/models.py", line 832, in raise_for_status
raise http_error

requests.exceptions.HTTPError: 404 Client Error

But, since our status_code for r was 200, when we call raise_for_status() we get:

>>> r.raise_for_status()
None

All is well.

3.3.11 Response Headers

We can view the server’s response headers using a Python dictionary:

>>> r.headers
{

'content-encoding': 'gzip',
'transfer-encoding': 'chunked',
'connection': 'close',
'server': 'nginx/1.0.4',
'x-runtime': '148ms',
'etag': '"e1ca502697e5c9317743dc078f67693f"',
'content-type': 'application/json'

}

The dictionary is special, though: it’s made just for HTTP headers. According to RFC 2616, HTTP Headers are
case-insensitive.

So, we can access the headers using any capitalization we want:

>>> r.headers['Content-Type']
'application/json'

>>> r.headers.get('content-type')
'application/json'

3.3.12 Cookies

If a response contains some Cookies, you can get quick access to them:

3.3. Quickstart 13

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Requests Documentation, Release 2.2.1

>>> url = 'http://example.com/some/cookie/setting/url'
>>> r = requests.get(url)

>>> r.cookies['example_cookie_name']
'example_cookie_value'

To send your own cookies to the server, you can use the cookies parameter:

>>> url = 'http://httpbin.org/cookies'
>>> cookies = dict(cookies_are='working')

>>> r = requests.get(url, cookies=cookies)
>>> r.text
'{"cookies": {"cookies_are": "working"}}'

3.3.13 Redirection and History

Requests will automatically perform location redirection for all verbs except HEAD.

GitHub redirects all HTTP requests to HTTPS. We can use the history method of the Response object to track
redirection. Let’s see what GitHub does:

>>> r = requests.get('http://github.com')
>>> r.url
'https://github.com/'
>>> r.status_code
200
>>> r.history
[<Response [301]>]

The Response.history list contains the Request objects that were created in order to complete the request.
The list is sorted from the oldest to the most recent request.

If you’re using GET, OPTIONS, POST, PUT, PATCH or DELETE, you can disable redirection handling with the
allow_redirects parameter:

>>> r = requests.get('http://github.com', allow_redirects=False)
>>> r.status_code
301
>>> r.history
[]

If you’re using HEAD, you can enable redirection as well:

>>> r = requests.post('http://github.com', allow_redirects=True)
>>> r.url
'https://github.com/'
>>> r.history
[<Response [301]>]

3.3.14 Timeouts

You can tell Requests to stop waiting for a response after a given number of seconds with the timeout parameter:

>>> requests.get('http://github.com', timeout=0.001)
Traceback (most recent call last):

14 Chapter 3. User Guide

Requests Documentation, Release 2.2.1

File "<stdin>", line 1, in <module>
requests.exceptions.Timeout: HTTPConnectionPool(host='github.com', port=80): Request timed out. (timeout=0.001)

Note
timeout is not a time limit on the entire response download; rather, an exception is raised if the server has not
issued a response for timeout seconds (more precisely, if no bytes have been received on the underlying socket for
timeout seconds).

3.3.15 Errors and Exceptions

In the event of a network problem (e.g. DNS failure, refused connection, etc), Requests will raise a
ConnectionError exception.

In the event of the rare invalid HTTP response, Requests will raise an HTTPError exception.

If a request times out, a Timeout exception is raised.

If a request exceeds the configured number of maximum redirections, a TooManyRedirects exception is raised.

All exceptions that Requests explicitly raises inherit from requests.exceptions.RequestException.

Ready for more? Check out the advanced section.

3.4 Advanced Usage

This document covers some of Requests more advanced features.

3.4.1 Session Objects

The Session object allows you to persist certain parameters across requests. It also persists cookies across all requests
made from the Session instance.

A Session object has all the methods of the main Requests API.

Let’s persist some cookies across requests:

s = requests.Session()

s.get('http://httpbin.org/cookies/set/sessioncookie/123456789')
r = s.get("http://httpbin.org/cookies")

print(r.text)
'{"cookies": {"sessioncookie": "123456789"}}'

Sessions can also be used to provide default data to the request methods. This is done by providing data to the
properties on a Session object:

s = requests.Session()
s.auth = ('user', 'pass')
s.headers.update({'x-test': 'true'})

both 'x-test' and 'x-test2' are sent
s.get('http://httpbin.org/headers', headers={'x-test2': 'true'})

3.4. Advanced Usage 15

Requests Documentation, Release 2.2.1

Any dictionaries that you pass to a request method will be merged with the session-level values that are set. The
method-level parameters override session parameters.

Remove a Value From a Dict Parameter
Sometimes you’ll want to omit session-level keys from a dict parameter. To do this, you simply set that key’s value to
None in the method-level parameter. It will automatically be omitted.

All values that are contained within a session are directly available to you. See the Session API Docs to learn more.

3.4.2 Request and Response Objects

Whenever a call is made to requests.get() and friends you are doing two major things. First, you are construct-
ing a Request object which will be sent off to a server to request or query some resource. Second, a Response
object is generated once requests gets a response back from the server. The Response object contains all of the
information returned by the server and also contains the Request object you created originally. Here is a simple
request to get some very important information from Wikipedia’s servers:

>>> r = requests.get('http://en.wikipedia.org/wiki/Monty_Python')

If we want to access the headers the server sent back to us, we do this:

>>> r.headers
{'content-length': '56170', 'x-content-type-options': 'nosniff', 'x-cache':
'HIT from cp1006.eqiad.wmnet, MISS from cp1010.eqiad.wmnet', 'content-encoding':
'gzip', 'age': '3080', 'content-language': 'en', 'vary': 'Accept-Encoding,Cookie',
'server': 'Apache', 'last-modified': 'Wed, 13 Jun 2012 01:33:50 GMT',
'connection': 'close', 'cache-control': 'private, s-maxage=0, max-age=0,
must-revalidate', 'date': 'Thu, 14 Jun 2012 12:59:39 GMT', 'content-type':
'text/html; charset=UTF-8', 'x-cache-lookup': 'HIT from cp1006.eqiad.wmnet:3128,
MISS from cp1010.eqiad.wmnet:80'}

However, if we want to get the headers we sent the server, we simply access the request, and then the request’s headers:

>>> r.request.headers
{'Accept-Encoding': 'identity, deflate, compress, gzip',
'Accept': '*/*', 'User-Agent': 'python-requests/1.2.0'}

3.4.3 Prepared Requests

Whenever you receive a Response object from an API call or a Session call, the request attribute is actually the
PreparedRequest that was used. In some cases you may wish to do some extra work to the body or headers (or
anything else really) before sending a request. The simple recipe for this is the following:

from requests import Request, Session

s = Session()
req = Request('GET', url,

data=data,
headers=header

)
prepped = req.prepare()

do something with prepped.body
do something with prepped.headers

16 Chapter 3. User Guide

Requests Documentation, Release 2.2.1

resp = s.send(prepped,
stream=stream,
verify=verify,
proxies=proxies,
cert=cert,
timeout=timeout

)

print(resp.status_code)

Since you are not doing anything special with the Request object, you prepare it immediately and modify the
PreparedRequest object. You then send that with the other parameters you would have sent to requests.* or
Sesssion.*.

However, the above code will lose some of the advantages of having a Requests Session object. In particular,
Session-level state such as cookies will not get applied to your request. To get a PreparedRequest with that
state applied, replace the call to Request.prepare() with a call to Session.prepare_request(), like
this:

from requests import Request, Session

s = Session()
req = Request('GET', url,

data=data
headers=headers

)

prepped = s.prepare_request(req)

do something with prepped.body
do something with prepped.headers

resp = s.send(prepped,
stream=stream,
verify=verify,
proxies=proxies,
cert=cert,
timeout=timeout

)

print(resp.status_code)

3.4.4 SSL Cert Verification

Requests can verify SSL certificates for HTTPS requests, just like a web browser. To check a host’s SSL certificate,
you can use the verify argument:

>>> requests.get('https://kennethreitz.com', verify=True)
requests.exceptions.SSLError: hostname 'kennethreitz.com' doesn't match either of '*.herokuapp.com', 'herokuapp.com'

I don’t have SSL setup on this domain, so it fails. Excellent. GitHub does though:

>>> requests.get('https://github.com', verify=True)
<Response [200]>

You can also pass verify the path to a CA_BUNDLE file for private certs. You can also set the
REQUESTS_CA_BUNDLE environment variable.

3.4. Advanced Usage 17

Requests Documentation, Release 2.2.1

Requests can also ignore verifying the SSL certificate if you set verify to False.

>>> requests.get('https://kennethreitz.com', verify=False)
<Response [200]>

By default, verify is set to True. Option verify only applies to host certs.

You can also specify a local cert to use as client side certificate, as a single file (containing the private key and the
certificate) or as a tuple of both file’s path:

>>> requests.get('https://kennethreitz.com', cert=('/path/server.crt', '/path/key'))
<Response [200]>

If you specify a wrong path or an invalid cert:

>>> requests.get('https://kennethreitz.com', cert='/wrong_path/server.pem')
SSLError: [Errno 336265225] _ssl.c:347: error:140B0009:SSL routines:SSL_CTX_use_PrivateKey_file:PEM lib

3.4.5 Body Content Workflow

By default, when you make a request, the body of the response is downloaded immediately. You can override this
behavior and defer downloading the response body until you access the Response.content attribute with the
stream parameter:

tarball_url = 'https://github.com/kennethreitz/requests/tarball/master'
r = requests.get(tarball_url, stream=True)

At this point only the response headers have been downloaded and the connection remains open, hence allowing us to
make content retrieval conditional:

if int(r.headers['content-length']) < TOO_LONG:
content = r.content
...

You can further control the workflow by use of the Response.iter_content and Response.iter_lines
methods. Alternatively, you can read the undecoded body from the underlying urllib3 urllib3.HTTPResponse
at Response.raw .

If you set stream to True when making a request, Requests cannot release the connection back to the pool unless
you consume all the data or call Response.close. This can lead to inefficiency with connections. If you find
yourself partially reading request bodies (or not reading them at all) while using stream=True, you should consider
using contextlib.closing (documented here), like this:

from contextlib import closing

with closing(requests.get('http://httpbin.org/get', stream=True)) as r:
Do things with the response here.

3.4.6 Keep-Alive

Excellent news — thanks to urllib3, keep-alive is 100% automatic within a session! Any requests that you make within
a session will automatically reuse the appropriate connection!

Note that connections are only released back to the pool for reuse once all body data has been read; be sure to either
set stream to False or read the content property of the Response object.

18 Chapter 3. User Guide

http://urllib3.readthedocs.org/en/latest/helpers.html#urllib3.response.HTTPResponse
http://docs.python.org/2/library/contextlib.html#contextlib.closing

Requests Documentation, Release 2.2.1

3.4.7 Streaming Uploads

Requests supports streaming uploads, which allow you to send large streams or files without reading them into memory.
To stream and upload, simply provide a file-like object for your body:

with open('massive-body') as f:
requests.post('http://some.url/streamed', data=f)

3.4.8 Chunk-Encoded Requests

Requests also supports Chunked transfer encoding for outgoing and incoming requests. To send a chunk-encoded
request, simply provide a generator (or any iterator without a length) for your body:

def gen():
yield 'hi'
yield 'there'

requests.post('http://some.url/chunked', data=gen())

3.4.9 Event Hooks

Requests has a hook system that you can use to manipulate portions of the request process, or signal event handling.

Available hooks:

response: The response generated from a Request.

You can assign a hook function on a per-request basis by passing a {hook_name: callback_function}
dictionary to the hooks request parameter:

hooks=dict(response=print_url)

That callback_function will receive a chunk of data as its first argument.

def print_url(r, *args, **kwargs):
print(r.url)

If an error occurs while executing your callback, a warning is given.

If the callback function returns a value, it is assumed that it is to replace the data that was passed in. If the function
doesn’t return anything, nothing else is effected.

Let’s print some request method arguments at runtime:

>>> requests.get('http://httpbin.org', hooks=dict(response=print_url))
http://httpbin.org
<Response [200]>

3.4.10 Custom Authentication

Requests allows you to use specify your own authentication mechanism.

Any callable which is passed as the auth argument to a request method will have the opportunity to modify the
request before it is dispatched.

3.4. Advanced Usage 19

Requests Documentation, Release 2.2.1

Authentication implementations are subclasses of requests.auth.AuthBase, and are easy to define. Re-
quests provides two common authentication scheme implementations in requests.auth: HTTPBasicAuth and
HTTPDigestAuth.

Let’s pretend that we have a web service that will only respond if the X-Pizza header is set to a password value.
Unlikely, but just go with it.

from requests.auth import AuthBase

class PizzaAuth(AuthBase):
"""Attaches HTTP Pizza Authentication to the given Request object."""
def __init__(self, username):

setup any auth-related data here
self.username = username

def __call__(self, r):
modify and return the request
r.headers['X-Pizza'] = self.username
return r

Then, we can make a request using our Pizza Auth:

>>> requests.get('http://pizzabin.org/admin', auth=PizzaAuth('kenneth'))
<Response [200]>

3.4.11 Streaming Requests

With requests.Response.iter_lines() you can easily iterate over streaming APIs such as the Twitter
Streaming API. Simply set stream to True and iterate over the response with iter_lines():

import json
import requests

r = requests.get('http://httpbin.org/stream/20', stream=True)

for line in r.iter_lines():

filter out keep-alive new lines
if line:

print json.loads(line)

3.4.12 Proxies

If you need to use a proxy, you can configure individual requests with the proxies argument to any request method:

import requests

proxies = {
"http": "http://10.10.1.10:3128",
"https": "http://10.10.1.10:1080",

}

requests.get("http://example.org", proxies=proxies)

You can also configure proxies by setting the environment variables HTTP_PROXY and HTTPS_PROXY.

20 Chapter 3. User Guide

https://dev.twitter.com/docs/streaming-api
https://dev.twitter.com/docs/streaming-api

Requests Documentation, Release 2.2.1

$ export HTTP_PROXY="http://10.10.1.10:3128"
$ export HTTPS_PROXY="http://10.10.1.10:1080"
$ python
>>> import requests
>>> requests.get("http://example.org")

To use HTTP Basic Auth with your proxy, use the http://user:password@host/ syntax:

proxies = {
"http": "http://user:pass@10.10.1.10:3128/",

}

Note that proxy URLs must include the scheme.

3.4.13 Compliance

Requests is intended to be compliant with all relevant specifications and RFCs where that compliance will not cause
difficulties for users. This attention to the specification can lead to some behaviour that may seem unusual to those not
familiar with the relevant specification.

Encodings

When you receive a response, Requests makes a guess at the encoding to use for decoding the response when you
access the Response.text attribute. Requests will first check for an encoding in the HTTP header, and if none is
present, will use chardet to attempt to guess the encoding.

The only time Requests will not do this is if no explicit charset is present in the HTTP headers and the
Content-Type header contains text. In this situation, RFC 2616 specifies that the default charset must be
ISO-8859-1. Requests follows the specification in this case. If you require a different encoding, you can man-
ually set the Response.encoding property, or use the raw Response.content.

3.4.14 HTTP Verbs

Requests provides access to almost the full range of HTTP verbs: GET, OPTIONS, HEAD, POST, PUT, PATCH and
DELETE. The following provides detailed examples of using these various verbs in Requests, using the GitHub API.

We will begin with the verb most commonly used: GET. HTTP GET is an idempotent method that returns a resource
from a given URL. As a result, it is the verb you ought to use when attempting to retrieve data from a web location.
An example usage would be attempting to get information about a specific commit from GitHub. Suppose we wanted
commit a050faf on Requests. We would get it like so:

>>> import requests
>>> r = requests.get('https://api.github.com/repos/kennethreitz/requests/git/commits/a050faf084662f3a352dd1a941f2c7c9f886d4ad')

We should confirm that GitHub responded correctly. If it has, we want to work out what type of content it is. Do this
like so:

>>> if (r.status_code == requests.codes.ok):
... print r.headers['content-type']
...
application/json; charset=utf-8

So, GitHub returns JSON. That’s great, we can use the r.json method to parse it into Python objects.

3.4. Advanced Usage 21

http://pypi.python.org/pypi/chardet
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.7.1

Requests Documentation, Release 2.2.1

>>> commit_data = r.json()
>>> print commit_data.keys()
[u'committer', u'author', u'url', u'tree', u'sha', u'parents', u'message']
>>> print commit_data[u'committer']
{u'date': u'2012-05-10T11:10:50-07:00', u'email': u'me@kennethreitz.com', u'name': u'Kenneth Reitz'}
>>> print commit_data[u'message']
makin' history

So far, so simple. Well, let’s investigate the GitHub API a little bit. Now, we could look at the documentation, but we
might have a little more fun if we use Requests instead. We can take advantage of the Requests OPTIONS verb to see
what kinds of HTTP methods are supported on the url we just used.

>>> verbs = requests.options(r.url)
>>> verbs.status_code
500

Uh, what? That’s unhelpful! Turns out GitHub, like many API providers, don’t actually implement the OPTIONS
method. This is an annoying oversight, but it’s OK, we can just use the boring documentation. If GitHub had correctly
implemented OPTIONS, however, they should return the allowed methods in the headers, e.g.

>>> verbs = requests.options('http://a-good-website.com/api/cats')
>>> print verbs.headers['allow']
GET,HEAD,POST,OPTIONS

Turning to the documentation, we see that the only other method allowed for commits is POST, which creates a new
commit. As we’re using the Requests repo, we should probably avoid making ham-handed POSTS to it. Instead, let’s
play with the Issues feature of GitHub.

This documentation was added in response to Issue #482. Given that this issue already exists, we will use it as an
example. Let’s start by getting it.

>>> r = requests.get('https://api.github.com/repos/kennethreitz/requests/issues/482')
>>> r.status_code
200
>>> issue = json.loads(r.text)
>>> print issue[u'title']
Feature any http verb in docs
>>> print issue[u'comments']
3

Cool, we have three comments. Let’s take a look at the last of them.

>>> r = requests.get(r.url + u'/comments')
>>> r.status_code
200
>>> comments = r.json()
>>> print comments[0].keys()
[u'body', u'url', u'created_at', u'updated_at', u'user', u'id']
>>> print comments[2][u'body']
Probably in the "advanced" section

Well, that seems like a silly place. Let’s post a comment telling the poster that he’s silly. Who is the poster, anyway?

>>> print comments[2][u'user'][u'login']
kennethreitz

OK, so let’s tell this Kenneth guy that we think this example should go in the quickstart guide instead. According to
the GitHub API doc, the way to do this is to POST to the thread. Let’s do it.

22 Chapter 3. User Guide

Requests Documentation, Release 2.2.1

>>> body = json.dumps({u"body": u"Sounds great! I'll get right on it!"})
>>> url = u"https://api.github.com/repos/kennethreitz/requests/issues/482/comments"
>>> r = requests.post(url=url, data=body)
>>> r.status_code
404

Huh, that’s weird. We probably need to authenticate. That’ll be a pain, right? Wrong. Requests makes it easy to use
many forms of authentication, including the very common Basic Auth.

>>> from requests.auth import HTTPBasicAuth
>>> auth = HTTPBasicAuth('fake@example.com', 'not_a_real_password')
>>> r = requests.post(url=url, data=body, auth=auth)
>>> r.status_code
201
>>> content = r.json()
>>> print content[u'body']
Sounds great! I'll get right on it.

Brilliant. Oh, wait, no! I meant to add that it would take me a while, because I had to go feed my cat. If only I could
edit this comment! Happily, GitHub allows us to use another HTTP verb, PATCH, to edit this comment. Let’s do that.

>>> print content[u"id"]
5804413
>>> body = json.dumps({u"body": u"Sounds great! I'll get right on it once I feed my cat."})
>>> url = u"https://api.github.com/repos/kennethreitz/requests/issues/comments/5804413"
>>> r = requests.patch(url=url, data=body, auth=auth)
>>> r.status_code
200

Excellent. Now, just to torture this Kenneth guy, I’ve decided to let him sweat and not tell him that I’m working on
this. That means I want to delete this comment. GitHub lets us delete comments using the incredibly aptly named
DELETE method. Let’s get rid of it.

>>> r = requests.delete(url=url, auth=auth)
>>> r.status_code
204
>>> r.headers['status']
'204 No Content'

Excellent. All gone. The last thing I want to know is how much of my ratelimit I’ve used. Let’s find out. GitHub sends
that information in the headers, so rather than download the whole page I’ll send a HEAD request to get the headers.

>>> r = requests.head(url=url, auth=auth)
>>> print r.headers
...
'x-ratelimit-remaining': '4995'
'x-ratelimit-limit': '5000'
...

Excellent. Time to write a Python program that abuses the GitHub API in all kinds of exciting ways, 4995 more times.

3.4.15 Link Headers

Many HTTP APIs feature Link headers. They make APIs more self describing and discoverable.

GitHub uses these for pagination in their API, for example:

3.4. Advanced Usage 23

http://developer.github.com/v3/#pagination

Requests Documentation, Release 2.2.1

>>> url = 'https://api.github.com/users/kennethreitz/repos?page=1&per_page=10'
>>> r = requests.head(url=url)
>>> r.headers['link']
'<https://api.github.com/users/kennethreitz/repos?page=2&per_page=10>; rel="next", <https://api.github.com/users/kennethreitz/repos?page=6&per_page=10>; rel="last"'

Requests will automatically parse these link headers and make them easily consumable:

>>> r.links["next"]
{'url': 'https://api.github.com/users/kennethreitz/repos?page=2&per_page=10', 'rel': 'next'}

>>> r.links["last"]
{'url': 'https://api.github.com/users/kennethreitz/repos?page=7&per_page=10', 'rel': 'last'}

3.4.16 Transport Adapters

As of v1.0.0, Requests has moved to a modular internal design. Part of the reason this was done was to implement
Transport Adapters, originally described here. Transport Adapters provide a mechanism to define interaction methods
for an HTTP service. In particular, they allow you to apply per-service configuration.

Requests ships with a single Transport Adapter, the HTTPAdapter. This adapter provides the default Requests
interaction with HTTP and HTTPS using the powerful urllib3 library. Whenever a Requests Session is initialized,
one of these is attached to the Session object for HTTP, and one for HTTPS.

Requests enables users to create and use their own Transport Adapters that provide specific functionality. Once created,
a Transport Adapter can be mounted to a Session object, along with an indication of which web services it should apply
to.

>>> s = requests.Session()
>>> s.mount('http://www.github.com', MyAdapter())

The mount call registers a specific instance of a Transport Adapter to a prefix. Once mounted, any HTTP request made
using that session whose URL starts with the given prefix will use the given Transport Adapter.

Many of the details of implementing a Transport Adapter are beyond the scope of this documentation, but take
a look at the next example for a simple SSL use- case. For more than that, you might look at subclassing
requests.adapters.BaseAdapter.

Example: Specific SSL Version

The Requests team has made a specific choice to use whatever SSL version is default in the underlying library (urllib3).
Normally this is fine, but from time to time, you might find yourself needing to connect to a service-endpoint that uses
a version that isn’t compatible with the default.

You can use Transport Adapters for this by taking most of the existing implementation of HTTPAdapter, and adding a
parameter ssl_version that gets passed-through to urllib3. We’ll make a TA that instructs the library to use SSLv3:

import ssl

from requests.adapters import HTTPAdapter
from requests.packages.urllib3.poolmanager import PoolManager

class Ssl3HttpAdapter(HTTPAdapter):
""""Transport adapter" that allows us to use SSLv3."""

def init_poolmanager(self, connections, maxsize, block=False):
self.poolmanager = PoolManager(num_pools=connections,

24 Chapter 3. User Guide

http://kennethreitz.org/exposures/the-future-of-python-http
https://github.com/shazow/urllib3
https://github.com/shazow/urllib3

Requests Documentation, Release 2.2.1

maxsize=maxsize,
block=block,
ssl_version=ssl.PROTOCOL_SSLv3)

3.4.17 Blocking Or Non-Blocking?

With the default Transport Adapter in place, Requests does not provide any kind of non-blocking IO. The
Response.content property will block until the entire response has been downloaded. If you require more gran-
ularity, the streaming features of the library (see Streaming Requests) allow you to retrieve smaller quantities of the
response at a time. However, these calls will still block.

If you are concerned about the use of blocking IO, there are lots of projects out there that combine Requests with one
of Python’s asynchronicity frameworks. Two excellent examples are grequests and requests-futures.

3.5 Authentication

This document discusses using various kinds of authentication with Requests.

Many web services require authentication, and there are many different types. Below, we outline various forms of
authentication available in Requests, from the simple to the complex.

3.5.1 Basic Authentication

Many web services that require authentication accept HTTP Basic Auth. This is the simplest kind, and Requests
supports it straight out of the box.

Making requests with HTTP Basic Auth is very simple:

>>> from requests.auth import HTTPBasicAuth
>>> requests.get('https://api.github.com/user', auth=HTTPBasicAuth('user', 'pass'))
<Response [200]>

In fact, HTTP Basic Auth is so common that Requests provides a handy shorthand for using it:

>>> requests.get('https://api.github.com/user', auth=('user', 'pass'))
<Response [200]>

Providing the credentials in a tuple like this is exactly the same as the HTTPBasicAuth example above.

netrc Authentication

If no authentication method is given with the auth argument, Requests will attempt to get the authentication creden-
tials for the URL’s hostname from the user’s netrc file.

If credentials for the hostname are found, the request is sent with HTTP Basic Auth.

3.5.2 Digest Authentication

Another very popular form of HTTP Authentication is Digest Authentication, and Requests supports this out of the
box as well:

3.5. Authentication 25

https://github.com/kennethreitz/grequests
https://github.com/ross/requests-futures

Requests Documentation, Release 2.2.1

>>> from requests.auth import HTTPDigestAuth
>>> url = 'http://httpbin.org/digest-auth/auth/user/pass'
>>> requests.get(url, auth=HTTPDigestAuth('user', 'pass'))
<Response [200]>

3.5.3 OAuth 1 Authentication

A common form of authentication for several web APIs is OAuth. The requests-oauthlib library allows Re-
quests users to easily make OAuth authenticated requests:

>>> import requests
>>> from requests_oauthlib import OAuth1

>>> url = 'https://api.twitter.com/1.1/account/verify_credentials.json'
>>> auth = OAuth1('YOUR_APP_KEY', 'YOUR_APP_SECRET',

'USER_OAUTH_TOKEN', 'USER_OAUTH_TOKEN_SECRET')

>>> requests.get(url, auth=auth)
<Response [200]>

For more information on how to OAuth flow works, please see the official OAuth website. For examples and docu-
mentation on requests-oauthlib, please see the requests_oauthlib repository on GitHub

3.5.4 Other Authentication

Requests is designed to allow other forms of authentication to be easily and quickly plugged in. Members of the
open-source community frequently write authentication handlers for more complicated or less commonly-used forms
of authentication. Some of the best have been brought together under the Requests organization, including:

• Kerberos

• NTLM

If you want to use any of these forms of authentication, go straight to their GitHub page and follow the instructions.

3.5.5 New Forms of Authentication

If you can’t find a good implementation of the form of authentication you want, you can implement it yourself.
Requests makes it easy to add your own forms of authentication.

To do so, subclass requests.auth.AuthBase and implement the __call__() method:

>>> import requests
>>> class MyAuth(requests.auth.AuthBase):
... def __call__(self, r):
... # Implement my authentication
... return r
...
>>> url = 'http://httpbin.org/get'
>>> requests.get(url, auth=MyAuth())
<Response [200]>

When an authentication handler is attached to a request, it is called during request setup. The __call__method must
therefore do whatever is required to make the authentication work. Some forms of authentication will additionally add
hooks to provide further functionality.

26 Chapter 3. User Guide

http://oauth.net/
https://github.com/requests/requests-oauthlib
https://github.com/requests
https://github.com/requests/requests-kerberos
https://github.com/requests/requests-ntlm

Requests Documentation, Release 2.2.1

Further examples can be found under the Requests organization and in the auth.py file.

3.5. Authentication 27

https://github.com/requests

Requests Documentation, Release 2.2.1

28 Chapter 3. User Guide

CHAPTER 4

Community Guide

This part of the documentation, which is mostly prose, details the Requests ecosystem and community.

4.1 Frequently Asked Questions

This part of the documentation answers common questions about Requests.

4.1.1 Encoded Data?

Requests automatically decompresses gzip-encoded responses, and does its best to decode response content to unicode
when possible.

You can get direct access to the raw response (and even the socket), if needed as well.

4.1.2 Custom User-Agents?

Requests allows you to easily override User-Agent strings, along with any other HTTP Header.

4.1.3 Why not Httplib2?

Chris Adams gave an excellent summary on Hacker News:

httplib2 is part of why you should use requests: it’s far more respectable as a client but not as well
documented and it still takes way too much code for basic operations. I appreciate what httplib2 is trying
to do, that there’s a ton of hard low-level annoyances in building a modern HTTP client, but really, just use
requests instead. Kenneth Reitz is very motivated and he gets the degree to which simple things should be
simple whereas httplib2 feels more like an academic exercise than something people should use to build
production systems[1].

Disclosure: I’m listed in the requests AUTHORS file but can claim credit for, oh, about 0.0001% of the
awesomeness.

1. http://code.google.com/p/httplib2/issues/detail?id=96 is a good example: an annoying bug which affect
many people, there was a fix available for months, which worked great when I applied it in a fork and
pounded a couple TB of data through it, but it took over a year to make it into trunk and even longer to
make it onto PyPI where any other project which required ” httplib2” would get the working version.

29

http://news.ycombinator.com/item?id=2884406
http://code.google.com/p/httplib2/issues/detail?id=96

Requests Documentation, Release 2.2.1

4.1.4 Python 3 Support?

Yes! Here’s a list of Python platforms that are officially supported:

• Python 2.6

• Python 2.7

• Python 3.1

• Python 3.2

• Python 3.3

• PyPy 1.9

4.2 Integrations

4.2.1 ScraperWiki

ScraperWiki is an excellent service that allows you to run Python, Ruby, and PHP scraper scripts on the web. Now,
Requests v0.6.1 is available to use in your scrapers!

To give it a try, simply:

import requests

4.2.2 Python for iOS

Requests is built into the wonderful Python for iOS runtime!

To give it a try, simply:

import requests

4.3 Articles & Talks

• Python for the Web teaches how to use Python to interact with the web, using Requests.

• Daniel Greenfield’s Review of Requests

• My ‘Python for Humans’ talk (audio)

• Issac Kelly’s ‘Consuming Web APIs’ talk

• Blog post about Requests via Yum

• Russian blog post introducing Requests

• French blog post introducing Requests

4.4 Support

If you have questions or issues about Requests, there are several options:

30 Chapter 4. Community Guide

https://scraperwiki.com/
https://itunes.apple.com/us/app/python-2.7-for-ios/id485729872?mt=Python8
http://gun.io/blog/python-for-the-web/
http://pydanny.blogspot.com/2011/05/python-http-requests-for-humans.html
http://python-for-humans.heroku.com
http://codeconf.s3.amazonaws.com/2011/pycodeconf/talks/PyCodeConf2011%20-%20Kenneth%20Reitz.m4a
http://issackelly.github.com/Consuming-Web-APIs-with-Python-Talk/slides/slides.html
http://arunsag.wordpress.com/2011/08/17/new-package-python-requests-http-for-humans/
http://habrahabr.ru/blogs/python/126262/
http://www.nicosphere.net/requests-urllib2-de-python-simplifie-2432/

Requests Documentation, Release 2.2.1

4.4.1 Send a Tweet

If your question is less than 140 characters, feel free to send a tweet to @kennethreitz.

4.4.2 File an Issue

If you notice some unexpected behavior in Requests, or want to see support for a new feature, file an issue on GitHub.

4.4.3 E-mail

I’m more than happy to answer any personal or in-depth questions about Requests. Feel free to email re-
quests@kennethreitz.com.

4.4.4 IRC

The official Freenode channel for Requests is #python-requests

I’m also available as kennethreitz on Freenode.

4.5 Community Updates

If you’d like to stay up to date on the community and development of Requests, there are several options:

4.5.1 GitHub

The best way to track the development of Requests is through the GitHub repo.

4.5.2 Twitter

I often tweet about new features and releases of Requests.

Follow @kennethreitz for updates.

4.5.3 Mailing List

There’s a low-volume mailing list for Requests. To subscribe to the mailing list, send an email to re-
quests@librelist.org.

4.6 Software Updates

4.6.1 Release History

2.2.1 (2014-01-23)

Bugfixes

4.5. Community Updates 31

http://twitter.com/kennethreitz
https://github.com/kennethreitz/requests/issues
mailto:requests@kennethreitz.com
mailto:requests@kennethreitz.com
https://github.com/kennethreitz/requests
https://twitter.com/kennethreitz
mailto:requests@librelist.org
mailto:requests@librelist.org

Requests Documentation, Release 2.2.1

• Fixes incorrect parsing of proxy credentials that contain a literal or encoded ‘#’ character.

• Assorted urllib3 fixes.

2.2.0 (2014-01-09)

API Changes

• New exception: ContentDecodingError. Raised instead of urllib3 DecodeError exceptions.

Bugfixes

• Avoid many many exceptions from the buggy implementation of proxy_bypass on OS X in Python 2.6.

• Avoid crashing when attempting to get authentication credentials from ~/.netrc when running as a user without
a home directory.

• Use the correct pool size for pools of connections to proxies.

• Fix iteration of CookieJar objects.

• Ensure that cookies are persisted over redirect.

• Switch back to using chardet, since it has merged with charade.

2.1.0 (2013-12-05)

• Updated CA Bundle, of course.

• Cookies set on individual Requests through a Session (e.g. via Session.get()) are no longer persisted
to the Session.

• Clean up connections when we hit problems during chunked upload, rather than leaking them.

• Return connections to the pool when a chunked upload is successful, rather than leaking it.

• Match the HTTPbis recommendation for HTTP 301 redirects.

• Prevent hanging when using streaming uploads and Digest Auth when a 401 is received.

• Values of headers set by Requests are now always the native string type.

• Fix previously broken SNI support.

• Fix accessing HTTP proxies using proxy authentication.

• Unencode HTTP Basic usernames and passwords extracted from URLs.

• Support for IP address ranges for no_proxy environment variable

• Parse headers correctly when users override the default Host: header.

• Avoid munging the URL in case of case-sensitive servers.

• Looser URL handling for non-HTTP/HTTPS urls.

• Accept unicode methods in Python 2.6 and 2.7.

• More resilient cookie handling.

• Make Response objects pickleable.

• Actually added MD5-sess to Digest Auth instead of pretending to like last time.

• Updated internal urllib3.

• Fixed @Lukasa’s lack of taste.

32 Chapter 4. Community Guide

Requests Documentation, Release 2.2.1

2.0.1 (2013-10-24)

• Updated included CA Bundle with new mistrusts and automated process for the future

• Added MD5-sess to Digest Auth

• Accept per-file headers in multipart file POST messages.

• Fixed: Don’t send the full URL on CONNECT messages.

• Fixed: Correctly lowercase a redirect scheme.

• Fixed: Cookies not persisted when set via functional API.

• Fixed: Translate urllib3 ProxyError into a requests ProxyError derived from ConnectionError.

• Updated internal urllib3 and chardet.

2.0.0 (2013-09-24)

API Changes:

• Keys in the Headers dictionary are now native strings on all Python versions, i.e. bytestrings on Python 2,
unicode on Python 3.

• Proxy URLs now must have an explicit scheme. A MissingSchema exception will be raised if they don’t.

• Timeouts now apply to read time if Stream=False.

• RequestException is now a subclass of IOError, not RuntimeError.

• Added new method to PreparedRequest objects: PreparedRequest.copy().

• Added new method to Session objects: Session.update_request(). This method updates a
Request object with the data (e.g. cookies) stored on the Session.

• Added new method to Session objects: Session.prepare_request(). This method updates and
prepares a Request object, and returns the corresponding PreparedRequest object.

• Added new method to HTTPAdapter objects: HTTPAdapter.proxy_headers(). This should not be
called directly, but improves the subclass interface.

• httplib.IncompleteRead exceptions caused by incorrect chunked encoding will now raise a Requests
ChunkedEncodingError instead.

• Invalid percent-escape sequences now cause a Requests InvalidURL exception to be raised.

• HTTP 208 no longer uses reason phrase "im_used". Correctly uses "already_reported".

• HTTP 226 reason added ("im_used").

Bugfixes:

• Vastly improved proxy support, including the CONNECT verb. Special thanks to the many contributors who
worked towards this improvement.

• Cookies are now properly managed when 401 authentication responses are received.

• Chunked encoding fixes.

• Support for mixed case schemes.

• Better handling of streaming downloads.

• Retrieve environment proxies from more locations.

• Minor cookies fixes.

4.6. Software Updates 33

Requests Documentation, Release 2.2.1

• Improved redirect behaviour.

• Improved streaming behaviour, particularly for compressed data.

• Miscellaneous small Python 3 text encoding bugs.

• .netrc no longer overrides explicit auth.

• Cookies set by hooks are now correctly persisted on Sessions.

• Fix problem with cookies that specify port numbers in their host field.

• BytesIO can be used to perform streaming uploads.

• More generous parsing of the no_proxy environment variable.

• Non-string objects can be passed in data values alongside files.

1.2.3 (2013-05-25)

• Simple packaging fix

1.2.2 (2013-05-23)

• Simple packaging fix

1.2.1 (2013-05-20)

• Python 3.3.2 compatibility

• Always percent-encode location headers

• Fix connection adapter matching to be most-specific first

• new argument to the default connection adapter for passing a block argument

• prevent a KeyError when there’s no link headers

1.2.0 (2013-03-31)

• Fixed cookies on sessions and on requests

• Significantly change how hooks are dispatched - hooks now receive all the arguments specified by the user when
making a request so hooks can make a secondary request with the same parameters. This is especially necessary
for authentication handler authors

• certifi support was removed

• Fixed bug where using OAuth 1 with body signature_type sent no data

• Major proxy work thanks to @Lukasa including parsing of proxy authentication from the proxy url

• Fix DigestAuth handling too many 401s

• Update vendored urllib3 to include SSL bug fixes

• Allow keyword arguments to be passed to json.loads() via the Response.json() method

• Don’t send Content-Length header by default on GET or HEAD requests

• Add elapsed attribute to Response objects to time how long a request took.

34 Chapter 4. Community Guide

Requests Documentation, Release 2.2.1

• Fix RequestsCookieJar

• Sessions and Adapters are now picklable, i.e., can be used with the multiprocessing library

• Update charade to version 1.0.3

The change in how hooks are dispatched will likely cause a great deal of issues.

1.1.0 (2013-01-10)

• CHUNKED REQUESTS

• Support for iterable response bodies

• Assume servers persist redirect params

• Allow explicit content types to be specified for file data

• Make merge_kwargs case-insensitive when looking up keys

1.0.3 (2012-12-18)

• Fix file upload encoding bug

• Fix cookie behavior

1.0.2 (2012-12-17)

• Proxy fix for HTTPAdapter.

1.0.1 (2012-12-17)

• Cert verification exception bug.

• Proxy fix for HTTPAdapter.

1.0.0 (2012-12-17)

• Massive Refactor and Simplification

• Switch to Apache 2.0 license

• Swappable Connection Adapters

• Mountable Connection Adapters

• Mutable ProcessedRequest chain

• /s/prefetch/stream

• Removal of all configuration

• Standard library logging

• Make Response.json() callable, not property.

• Usage of new charade project, which provides python 2 and 3 simultaneous chardet.

• Removal of all hooks except ‘response’

4.6. Software Updates 35

Requests Documentation, Release 2.2.1

• Removal of all authentication helpers (OAuth, Kerberos)

This is not a backwards compatible change.

0.14.2 (2012-10-27)

• Improved mime-compatible JSON handling

• Proxy fixes

• Path hack fixes

• Case-Insensistive Content-Encoding headers

• Support for CJK parameters in form posts

0.14.1 (2012-10-01)

• Python 3.3 Compatibility

• Simply default accept-encoding

• Bugfixes

0.14.0 (2012-09-02)

• No more iter_content errors if already downloaded.

0.13.9 (2012-08-25)

• Fix for OAuth + POSTs

• Remove exception eating from dispatch_hook

• General bugfixes

0.13.8 (2012-08-21)

• Incredible Link header support :)

0.13.7 (2012-08-19)

• Support for (key, value) lists everywhere.

• Digest Authentication improvements.

• Ensure proxy exclusions work properly.

• Clearer UnicodeError exceptions.

• Automatic casting of URLs to tsrings (fURL and such)

• Bugfixes.

36 Chapter 4. Community Guide

Requests Documentation, Release 2.2.1

0.13.6 (2012-08-06)

• Long awaited fix for hanging connections!

0.13.5 (2012-07-27)

• Packaging fix

0.13.4 (2012-07-27)

• GSSAPI/Kerberos authentication!

• App Engine 2.7 Fixes!

• Fix leaking connections (from urllib3 update)

• OAuthlib path hack fix

• OAuthlib URL parameters fix.

0.13.3 (2012-07-12)

• Use simplejson if available.

• Do not hide SSLErrors behind Timeouts.

• Fixed param handling with urls containing fragments.

• Significantly improved information in User Agent.

• client certificates are ignored when verify=False

0.13.2 (2012-06-28)

• Zero dependencies (once again)!

• New: Response.reason

• Sign querystring parameters in OAuth 1.0

• Client certificates no longer ignored when verify=False

• Add openSUSE certificate support

0.13.1 (2012-06-07)

• Allow passing a file or file-like object as data.

• Allow hooks to return responses that indicate errors.

• Fix Response.text and Response.json for body-less responses.

4.6. Software Updates 37

Requests Documentation, Release 2.2.1

0.13.0 (2012-05-29)

• Removal of Requests.async in favor of grequests

• Allow disabling of cookie persistiance.

• New implimentation of safe_mode

• cookies.get now supports default argument

• Session cookies not saved when Session.request is called with return_response=False

• Env: no_proxy support.

• RequestsCookieJar improvements.

• Various bug fixes.

0.12.1 (2012-05-08)

• New Response.json property.

• Ability to add string file uploads.

• Fix out-of-range issue with iter_lines.

• Fix iter_content default size.

• Fix POST redirects containing files.

0.12.0 (2012-05-02)

• EXPERIMENTAL OAUTH SUPPORT!

• Proper CookieJar-backed cookies interface with awesome dict-like interface.

• Speed fix for non-iterated content chunks.

• Move pre_request to a more usable place.

• New pre_send hook.

• Lazily encode data, params, files.

• Load system Certificate Bundle if certify isn’t available.

• Cleanups, fixes.

0.11.2 (2012-04-22)

• Attempt to use the OS’s certificate bundle if certifi isn’t available.

• Infinite digest auth redirect fix.

• Multi-part file upload improvements.

• Fix decoding of invalid %encodings in URLs.

• If there is no content in a response don’t throw an error the second time that content is attempted to be read.

• Upload data on redirects.

38 Chapter 4. Community Guide

https://github.com/kennethreitz/grequests

Requests Documentation, Release 2.2.1

0.11.1 (2012-03-30)

• POST redirects now break RFC to do what browsers do: Follow up with a GET.

• New strict_mode configuration to disable new redirect behavior.

0.11.0 (2012-03-14)

• Private SSL Certificate support

• Remove select.poll from Gevent monkeypatching

• Remove redundant generator for chunked transfer encoding

• Fix: Response.ok raises Timeout Exception in safe_mode

0.10.8 (2012-03-09)

• Generate chunked ValueError fix

• Proxy configuration by environment variables

• Simplification of iter_lines.

• New trust_env configuration for disabling system/environment hints.

• Suppress cookie errors.

0.10.7 (2012-03-07)

• encode_uri = False

0.10.6 (2012-02-25)

• Allow ‘=’ in cookies.

0.10.5 (2012-02-25)

• Response body with 0 content-length fix.

• New async.imap.

• Don’t fail on netrc.

0.10.4 (2012-02-20)

• Honor netrc.

4.6. Software Updates 39

Requests Documentation, Release 2.2.1

0.10.3 (2012-02-20)

• HEAD requests don’t follow redirects anymore.

• raise_for_status() doesn’t raise for 3xx anymore.

• Make Session objects picklable.

• ValueError for invalid schema URLs.

0.10.2 (2012-01-15)

• Vastly improved URL quoting.

• Additional allowed cookie key values.

• Attempted fix for “Too many open files” Error

• Replace unicode errors on first pass, no need for second pass.

• Append ‘/’ to bare-domain urls before query insertion.

• Exceptions now inherit from RuntimeError.

• Binary uploads + auth fix.

• Bugfixes.

0.10.1 (2012-01-23)

• PYTHON 3 SUPPORT!

• Dropped 2.5 Support. (Backwards Incompatible)

0.10.0 (2012-01-21)

• Response.content is now bytes-only. (Backwards Incompatible)

• New Response.text is unicode-only.

• If no Response.encoding is specified and chardet is available, Respoonse.text will guess an en-
coding.

• Default to ISO-8859-1 (Western) encoding for “text” subtypes.

• Removal of decode_unicode. (Backwards Incompatible)

• New multiple-hooks system.

• New Response.register_hook for registering hooks within the pipeline.

• Response.url is now Unicode.

0.9.3 (2012-01-18)

• SSL verify=False bugfix (apparent on windows machines).

40 Chapter 4. Community Guide

Requests Documentation, Release 2.2.1

0.9.2 (2012-01-18)

• Asynchronous async.send method.

• Support for proper chunk streams with boundaries.

• session argument for Session classes.

• Print entire hook tracebacks, not just exception instance.

• Fix response.iter_lines from pending next line.

• Fix but in HTTP-digest auth w/ URI having query strings.

• Fix in Event Hooks section.

• Urllib3 update.

0.9.1 (2012-01-06)

• danger_mode for automatic Response.raise_for_status()

• Response.iter_lines refactor

0.9.0 (2011-12-28)

• verify ssl is default.

0.8.9 (2011-12-28)

• Packaging fix.

0.8.8 (2011-12-28)

• SSL CERT VERIFICATION!

• Release of Cerifi: Mozilla’s cert list.

• New ‘verify’ argument for SSL requests.

• Urllib3 update.

0.8.7 (2011-12-24)

• iter_lines last-line truncation fix

• Force safe_mode for async requests

• Handle safe_mode exceptions more consistently

• Fix iteration on null responses in safe_mode

0.8.6 (2011-12-18)

• Socket timeout fixes.

• Proxy Authorization support.

4.6. Software Updates 41

Requests Documentation, Release 2.2.1

0.8.5 (2011-12-14)

• Response.iter_lines!

0.8.4 (2011-12-11)

• Prefetch bugfix.

• Added license to installed version.

0.8.3 (2011-11-27)

• Converted auth system to use simpler callable objects.

• New session parameter to API methods.

• Display full URL while logging.

0.8.2 (2011-11-19)

• New Unicode decoding system, based on over-ridable Response.encoding.

• Proper URL slash-quote handling.

• Cookies with [,], and _ allowed.

0.8.1 (2011-11-15)

• URL Request path fix

• Proxy fix.

• Timeouts fix.

0.8.0 (2011-11-13)

• Keep-alive support!

• Complete removal of Urllib2

• Complete removal of Poster

• Complete removal of CookieJars

• New ConnectionError raising

• Safe_mode for error catching

• prefetch parameter for request methods

• OPTION method

• Async pool size throttling

• File uploads send real names

• Vendored in urllib3

42 Chapter 4. Community Guide

Requests Documentation, Release 2.2.1

0.7.6 (2011-11-07)

• Digest authentication bugfix (attach query data to path)

0.7.5 (2011-11-04)

• Response.content = None if there was an invalid repsonse.

• Redirection auth handling.

0.7.4 (2011-10-26)

• Session Hooks fix.

0.7.3 (2011-10-23)

• Digest Auth fix.

0.7.2 (2011-10-23)

• PATCH Fix.

0.7.1 (2011-10-23)

• Move away from urllib2 authentication handling.

• Fully Remove AuthManager, AuthObject, &c.

• New tuple-based auth system with handler callbacks.

0.7.0 (2011-10-22)

• Sessions are now the primary interface.

• Deprecated InvalidMethodException.

• PATCH fix.

• New config system (no more global settings).

0.6.6 (2011-10-19)

• Session parameter bugfix (params merging).

0.6.5 (2011-10-18)

• Offline (fast) test suite.

• Session dictionary argument merging.

4.6. Software Updates 43

Requests Documentation, Release 2.2.1

0.6.4 (2011-10-13)

• Automatic decoding of unicode, based on HTTP Headers.

• New decode_unicode setting.

• Removal of r.read/close methods.

• New r.faw interface for advanced response usage.*

• Automatic expansion of parameterized headers.

0.6.3 (2011-10-13)

• Beautiful requests.async module, for making async requests w/ gevent.

0.6.2 (2011-10-09)

• GET/HEAD obeys allow_redirects=False.

0.6.1 (2011-08-20)

• Enhanced status codes experience \o/

• Set a maximum number of redirects (settings.max_redirects)

• Full Unicode URL support

• Support for protocol-less redirects.

• Allow for arbitrary request types.

• Bugfixes

0.6.0 (2011-08-17)

• New callback hook system

• New persistient sessions object and context manager

• Transparent Dict-cookie handling

• Status code reference object

• Removed Response.cached

• Added Response.request

• All args are kwargs

• Relative redirect support

• HTTPError handling improvements

• Improved https testing

• Bugfixes

44 Chapter 4. Community Guide

Requests Documentation, Release 2.2.1

0.5.1 (2011-07-23)

• International Domain Name Support!

• Access headers without fetching entire body (read())

• Use lists as dicts for parameters

• Add Forced Basic Authentication

• Forced Basic is default authentication type

• python-requests.org default User-Agent header

• CaseInsensitiveDict lower-case caching

• Response.history bugfix

0.5.0 (2011-06-21)

• PATCH Support

• Support for Proxies

• HTTPBin Test Suite

• Redirect Fixes

• settings.verbose stream writing

• Querystrings for all methods

• URLErrors (Connection Refused, Timeout, Invalid URLs) are treated as explicity raised
r.requests.get(’hwe://blah’); r.raise_for_status()

0.4.1 (2011-05-22)

• Improved Redirection Handling

• New ‘allow_redirects’ param for following non-GET/HEAD Redirects

• Settings module refactoring

0.4.0 (2011-05-15)

• Response.history: list of redirected responses

• Case-Insensitive Header Dictionaries!

• Unicode URLs

0.3.4 (2011-05-14)

• Urllib2 HTTPAuthentication Recursion fix (Basic/Digest)

• Internal Refactor

• Bytes data upload Bugfix

4.6. Software Updates 45

Requests Documentation, Release 2.2.1

0.3.3 (2011-05-12)

• Request timeouts

• Unicode url-encoded data

• Settings context manager and module

0.3.2 (2011-04-15)

• Automatic Decompression of GZip Encoded Content

• AutoAuth Support for Tupled HTTP Auth

0.3.1 (2011-04-01)

• Cookie Changes

• Response.read()

• Poster fix

0.3.0 (2011-02-25)

• Automatic Authentication API Change

• Smarter Query URL Parameterization

• Allow file uploads and POST data together

• New Authentication Manager System

– Simpler Basic HTTP System

– Supports all build-in urllib2 Auths

– Allows for custom Auth Handlers

0.2.4 (2011-02-19)

• Python 2.5 Support

• PyPy-c v1.4 Support

• Auto-Authentication tests

• Improved Request object constructor

0.2.3 (2011-02-15)

• New HTTPHandling Methods

– Response.__nonzero__ (false if bad HTTP Status)

– Response.ok (True if expected HTTP Status)

– Response.error (Logged HTTPError if bad HTTP Status)

– Response.raise_for_status() (Raises stored HTTPError)

46 Chapter 4. Community Guide

Requests Documentation, Release 2.2.1

0.2.2 (2011-02-14)

• Still handles request in the event of an HTTPError. (Issue #2)

• Eventlet and Gevent Monkeypatch support.

• Cookie Support (Issue #1)

0.2.1 (2011-02-14)

• Added file attribute to POST and PUT requests for multipart-encode file uploads.

• Added Request.url attribute for context and redirects

0.2.0 (2011-02-14)

• Birth!

0.0.1 (2011-02-13)

• Frustration

• Conception

4.6. Software Updates 47

Requests Documentation, Release 2.2.1

48 Chapter 4. Community Guide

CHAPTER 5

API Documentation

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

5.1 Developer Interface

This part of the documentation covers all the interfaces of Requests. For parts where Requests depends on external
libraries, we document the most important right here and provide links to the canonical documentation.

5.1.1 Main Interface

All of Requests’ functionality can be accessed by these 7 methods. They all return an instance of the Response
object.

requests.request(method, url, **kwargs)
Constructs and sends a Request. Returns Response object.

Parameters

• method – method for the new Request object.

• url – URL for the new Request object.

• params – (optional) Dictionary or bytes to be sent in the query string for the Request.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the Request.

• headers – (optional) Dictionary of HTTP Headers to send with the Request.

• cookies – (optional) Dict or CookieJar object to send with the Request.

• files – (optional) Dictionary of ‘name’: file-like-objects (or {‘name’: (‘filename’,
fileobj)}) for multipart encoding upload.

• auth – (optional) Auth tuple to enable Basic/Digest/Custom HTTP Auth.

• timeout – (optional) Float describing the timeout of the request.

• allow_redirects – (optional) Boolean. Set to True if POST/PUT/DELETE redirect
following is allowed.

• proxies – (optional) Dictionary mapping protocol to the URL of the proxy.

• verify – (optional) if True, the SSL cert will be verified. A CA_BUNDLE path can also
be provided.

49

Requests Documentation, Release 2.2.1

• stream – (optional) if False, the response content will be immediately downloaded.

• cert – (optional) if String, path to ssl client cert file (.pem). If Tuple, (‘cert’, ‘key’) pair.

Usage:

>>> import requests
>>> req = requests.request('GET', 'http://httpbin.org/get')
<Response [200]>

requests.head(url, **kwargs)
Sends a HEAD request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

requests.get(url, **kwargs)
Sends a GET request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

requests.post(url, data=None, **kwargs)
Sends a POST request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the Request.

• **kwargs – Optional arguments that request takes.

requests.put(url, data=None, **kwargs)
Sends a PUT request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the Request.

• **kwargs – Optional arguments that request takes.

requests.patch(url, data=None, **kwargs)
Sends a PATCH request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the Request.

• **kwargs – Optional arguments that request takes.

requests.delete(url, **kwargs)
Sends a DELETE request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

50 Chapter 5. API Documentation

Requests Documentation, Release 2.2.1

Lower-Level Classes

class requests.Request(method=None, url=None, headers=None, files=None, data=None,
params=None, auth=None, cookies=None, hooks=None)

A user-created Request object.

Used to prepare a PreparedRequest, which is sent to the server.

Parameters

• method – HTTP method to use.

• url – URL to send.

• headers – dictionary of headers to send.

• files – dictionary of {filename: fileobject} files to multipart upload.

• data – the body to attach the request. If a dictionary is provided, form-encoding will take
place.

• params – dictionary of URL parameters to append to the URL.

• auth – Auth handler or (user, pass) tuple.

• cookies – dictionary or CookieJar of cookies to attach to this request.

• hooks – dictionary of callback hooks, for internal usage.

Usage:

>>> import requests
>>> req = requests.Request('GET', 'http://httpbin.org/get')
>>> req.prepare()
<PreparedRequest [GET]>

deregister_hook(event, hook)
Deregister a previously registered hook. Returns True if the hook existed, False if not.

prepare()
Constructs a PreparedRequest for transmission and returns it.

register_hook(event, hook)
Properly register a hook.

class requests.Response
The Response object, which contains a server’s response to an HTTP request.

apparent_encoding
The apparent encoding, provided by the lovely Charade library (Thanks, Ian!).

close()
Closes the underlying file descriptor and releases the connection back to the pool.

Note: Should not normally need to be called explicitly.

content
Content of the response, in bytes.

cookies = None
A CookieJar of Cookies the server sent back.

elapsed = None
The amount of time elapsed between sending the request and the arrival of the response (as a timedelta)

5.1. Developer Interface 51

Requests Documentation, Release 2.2.1

encoding = None
Encoding to decode with when accessing r.text.

headers = None
Case-insensitive Dictionary of Response Headers. For example, headers[’content-encoding’]
will return the value of a ’Content-Encoding’ response header.

history = None
A list of Response objects from the history of the Request. Any redirect responses will end up here. The
list is sorted from the oldest to the most recent request.

iter_content(chunk_size=1, decode_unicode=False)
Iterates over the response data. When stream=True is set on the request, this avoids reading the content at
once into memory for large responses. The chunk size is the number of bytes it should read into memory.
This is not necessarily the length of each item returned as decoding can take place.

iter_lines(chunk_size=512, decode_unicode=None)
Iterates over the response data, one line at a time. When stream=True is set on the request, this avoids
reading the content at once into memory for large responses.

json(**kwargs)
Returns the json-encoded content of a response, if any.

Parameters **kwargs – Optional arguments that json.loads takes.

links
Returns the parsed header links of the response, if any.

raise_for_status()
Raises stored HTTPError, if one occurred.

raw = None
File-like object representation of response (for advanced usage). Use of raw requires that stream=True
be set on the request.

status_code = None
Integer Code of responded HTTP Status.

text
Content of the response, in unicode.

If Response.encoding is None, encoding will be guessed using chardet.

The encoding of the response content is determined based soley on HTTP headers, following RFC 2616 to
the letter. If you can take advantage of non-HTTP knowledge to make a better guess at the encoding, you
should set r.encoding appropriately before accessing this property.

url = None
Final URL location of Response.

5.1.2 Request Sessions

class requests.Session
A Requests session.

Provides cookie persistence, connection-pooling, and configuration.

Basic Usage:

52 Chapter 5. API Documentation

Requests Documentation, Release 2.2.1

>>> import requests
>>> s = requests.Session()
>>> s.get('http://httpbin.org/get')
200

auth = None
Default Authentication tuple or object to attach to Request.

cert = None
SSL certificate default.

close()
Closes all adapters and as such the session

cookies = None
A CookieJar containing all currently outstanding cookies set on this session. By default it is a
RequestsCookieJar, but may be any other cookielib.CookieJar compatible object.

delete(url, **kwargs)
Sends a DELETE request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

get(url, **kwargs)
Sends a GET request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

get_adapter(url)
Returns the appropriate connnection adapter for the given URL.

head(url, **kwargs)
Sends a HEAD request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

headers = None
A case-insensitive dictionary of headers to be sent on each Request sent from this Session.

hooks = None
Event-handling hooks.

max_redirects = None
Maximum number of redirects allowed. If the request exceeds this limit, a TooManyRedirects excep-
tion is raised.

mount(prefix, adapter)
Registers a connection adapter to a prefix.

Adapters are sorted in descending order by key length.

options(url, **kwargs)
Sends a OPTIONS request. Returns Response object.

5.1. Developer Interface 53

Requests Documentation, Release 2.2.1

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

params = None
Dictionary of querystring data to attach to each Request. The dictionary values may be lists for repre-
senting multivalued query parameters.

patch(url, data=None, **kwargs)
Sends a PATCH request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• **kwargs – Optional arguments that request takes.

post(url, data=None, **kwargs)
Sends a POST request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• **kwargs – Optional arguments that request takes.

prepare_request(request)
Constructs a PreparedRequest for transmission and returns it. The PreparedRequest has settings
merged from the Request instance and those of the Session.

Parameters request – Request instance to prepare with this session’s settings.

proxies = None
Dictionary mapping protocol to the URL of the proxy (e.g. {‘http’: ‘foo.bar:3128’}) to be used on each
Request.

put(url, data=None, **kwargs)
Sends a PUT request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• **kwargs – Optional arguments that request takes.

request(method, url, params=None, data=None, headers=None, cookies=None, files=None,
auth=None, timeout=None, allow_redirects=True, proxies=None, hooks=None,
stream=None, verify=None, cert=None)

Constructs a Request, prepares it and sends it. Returns Response object.

Parameters

• method – method for the new Request object.

• url – URL for the new Request object.

54 Chapter 5. API Documentation

Requests Documentation, Release 2.2.1

• params – (optional) Dictionary or bytes to be sent in the query string for the Request.

• data – (optional) Dictionary or bytes to send in the body of the Request.

• headers – (optional) Dictionary of HTTP Headers to send with the Request.

• cookies – (optional) Dict or CookieJar object to send with the Request.

• files – (optional) Dictionary of ‘filename’: file-like-objects for multipart encoding up-
load.

• auth – (optional) Auth tuple or callable to enable Basic/Digest/Custom HTTP Auth.

• timeout – (optional) Float describing the timeout of the request.

• allow_redirects – (optional) Boolean. Set to True by default.

• proxies – (optional) Dictionary mapping protocol to the URL of the proxy.

• stream – (optional) whether to immediately download the response content. Defaults to
False.

• verify – (optional) if True, the SSL cert will be verified. A CA_BUNDLE path can
also be provided.

• cert – (optional) if String, path to ssl client cert file (.pem). If Tuple, (‘cert’, ‘key’) pair.

resolve_redirects(resp, req, stream=False, timeout=None, verify=True, cert=None, prox-
ies=None)

Receives a Response. Returns a generator of Responses.

send(request, **kwargs)
Send a given PreparedRequest.

stream = None
Stream response content default.

trust_env = None
Should we trust the environment?

verify = None
SSL Verification default.

class requests.adapters.HTTPAdapter(pool_connections=10, pool_maxsize=10, max_retries=0,
pool_block=False)

The built-in HTTP Adapter for urllib3.

Provides a general-case interface for Requests sessions to contact HTTP and HTTPS urls by implementing the
Transport Adapter interface. This class will usually be created by the Session class under the covers.

Parameters

• pool_connections – The number of urllib3 connection pools to cache.

• pool_maxsize – The maximum number of connections to save in the pool.

• max_retries (int) – The maximum number of retries each connection should attempt.
Note, this applies only to failed connections and timeouts, never to requests where the server
returns a response.

• pool_block – Whether the connection pool should block for connections.

Usage:

5.1. Developer Interface 55

Requests Documentation, Release 2.2.1

>>> import requests
>>> s = requests.Session()
>>> a = requests.adapters.HTTPAdapter(max_retries=3)
>>> s.mount('http://', a)

add_headers(request, **kwargs)
Add any headers needed by the connection. As of v2.0 this does nothing by default, but is left for overriding
by users that subclass the HTTPAdapter.

This should not be called from user code, and is only exposed for use when subclassing the
HTTPAdapter.

Parameters

• request – The PreparedRequest to add headers to.

• kwargs – The keyword arguments from the call to send().

build_response(req, resp)
Builds a Response object from a urllib3 response. This should not be called from user code, and is only
exposed for use when subclassing the HTTPAdapter

Parameters

• req – The PreparedRequest used to generate the response.

• resp – The urllib3 response object.

cert_verify(conn, url, verify, cert)
Verify a SSL certificate. This method should not be called from user code, and is only exposed for use
when subclassing the HTTPAdapter.

Parameters

• conn – The urllib3 connection object associated with the cert.

• url – The requested URL.

• verify – Whether we should actually verify the certificate.

• cert – The SSL certificate to verify.

close()
Disposes of any internal state.

Currently, this just closes the PoolManager, which closes pooled connections.

get_connection(url, proxies=None)
Returns a urllib3 connection for the given URL. This should not be called from user code, and is only
exposed for use when subclassing the HTTPAdapter.

Parameters

• url – The URL to connect to.

• proxies – (optional) A Requests-style dictionary of proxies used on this request.

init_poolmanager(connections, maxsize, block=False)
Initializes a urllib3 PoolManager. This method should not be called from user code, and is only exposed
for use when subclassing the HTTPAdapter.

Parameters

• connections – The number of urllib3 connection pools to cache.

• maxsize – The maximum number of connections to save in the pool.

56 Chapter 5. API Documentation

Requests Documentation, Release 2.2.1

• block – Block when no free connections are available.

proxy_headers(proxy)
Returns a dictionary of the headers to add to any request sent through a proxy. This works with urllib3
magic to ensure that they are correctly sent to the proxy, rather than in a tunnelled request if CONNECT
is being used.

This should not be called from user code, and is only exposed for use when subclassing the
HTTPAdapter.

Parameters

• proxies – The url of the proxy being used for this request.

• kwargs – Optional additional keyword arguments.

request_url(request, proxies)
Obtain the url to use when making the final request.

If the message is being sent through a HTTP proxy, the full URL has to be used. Otherwise, we should
only use the path portion of the URL.

This should not be called from user code, and is only exposed for use when subclassing the
HTTPAdapter.

Parameters

• request – The PreparedRequest being sent.

• proxies – A dictionary of schemes to proxy URLs.

send(request, stream=False, timeout=None, verify=True, cert=None, proxies=None)
Sends PreparedRequest object. Returns Response object.

Parameters

• request – The PreparedRequest being sent.

• stream – (optional) Whether to stream the request content.

• timeout – (optional) The timeout on the request.

• verify – (optional) Whether to verify SSL certificates.

• cert – (optional) Any user-provided SSL certificate to be trusted.

• proxies – (optional) The proxies dictionary to apply to the request.

Exceptions

exception requests.exceptions.RequestException
There was an ambiguous exception that occurred while handling your request.

exception requests.exceptions.ConnectionError
A Connection error occurred.

exception requests.exceptions.HTTPError(*args, **kwargs)
An HTTP error occurred.

exception requests.exceptions.URLRequired
A valid URL is required to make a request.

exception requests.exceptions.TooManyRedirects
Too many redirects.

5.1. Developer Interface 57

Requests Documentation, Release 2.2.1

Status Code Lookup

requests.codes()
Dictionary lookup object.

>>> requests.codes['temporary_redirect']
307

>>> requests.codes.teapot
418

>>> requests.codes['\o/']
200

Cookies

requests.utils.dict_from_cookiejar(cj)
Returns a key/value dictionary from a CookieJar.

Parameters cj – CookieJar object to extract cookies from.

requests.utils.cookiejar_from_dict(cookie_dict, cookiejar=None, overwrite=True)
Returns a CookieJar from a key/value dictionary.

Parameters

• cookie_dict – Dict of key/values to insert into CookieJar.

• cookiejar – (optional) A cookiejar to add the cookies to.

• overwrite – (optional) If False, will not replace cookies already in the jar with new ones.

requests.utils.add_dict_to_cookiejar(cj, cookie_dict)
Returns a CookieJar from a key/value dictionary.

Parameters

• cj – CookieJar to insert cookies into.

• cookie_dict – Dict of key/values to insert into CookieJar.

Encodings

requests.utils.get_encodings_from_content(content)
Returns encodings from given content string.

Parameters content – bytestring to extract encodings from.

requests.utils.get_encoding_from_headers(headers)
Returns encodings from given HTTP Header Dict.

Parameters headers – dictionary to extract encoding from.

requests.utils.get_unicode_from_response(r)
Returns the requested content back in unicode.

Parameters r – Response object to get unicode content from.

Tried:

1.charset from content-type

58 Chapter 5. API Documentation

Requests Documentation, Release 2.2.1

2.every encodings from <meta ... charset=XXX>

3.fall back and replace all unicode characters

Classes

class requests.Response
The Response object, which contains a server’s response to an HTTP request.

apparent_encoding
The apparent encoding, provided by the lovely Charade library (Thanks, Ian!).

close()
Closes the underlying file descriptor and releases the connection back to the pool.

Note: Should not normally need to be called explicitly.

content
Content of the response, in bytes.

cookies = None
A CookieJar of Cookies the server sent back.

elapsed = None
The amount of time elapsed between sending the request and the arrival of the response (as a timedelta)

encoding = None
Encoding to decode with when accessing r.text.

headers = None
Case-insensitive Dictionary of Response Headers. For example, headers[’content-encoding’]
will return the value of a ’Content-Encoding’ response header.

history = None
A list of Response objects from the history of the Request. Any redirect responses will end up here. The
list is sorted from the oldest to the most recent request.

iter_content(chunk_size=1, decode_unicode=False)
Iterates over the response data. When stream=True is set on the request, this avoids reading the content at
once into memory for large responses. The chunk size is the number of bytes it should read into memory.
This is not necessarily the length of each item returned as decoding can take place.

iter_lines(chunk_size=512, decode_unicode=None)
Iterates over the response data, one line at a time. When stream=True is set on the request, this avoids
reading the content at once into memory for large responses.

json(**kwargs)
Returns the json-encoded content of a response, if any.

Parameters **kwargs – Optional arguments that json.loads takes.

links
Returns the parsed header links of the response, if any.

raise_for_status()
Raises stored HTTPError, if one occurred.

raw = None
File-like object representation of response (for advanced usage). Use of raw requires that stream=True
be set on the request.

5.1. Developer Interface 59

Requests Documentation, Release 2.2.1

status_code = None
Integer Code of responded HTTP Status.

text
Content of the response, in unicode.

If Response.encoding is None, encoding will be guessed using chardet.

The encoding of the response content is determined based soley on HTTP headers, following RFC 2616 to
the letter. If you can take advantage of non-HTTP knowledge to make a better guess at the encoding, you
should set r.encoding appropriately before accessing this property.

url = None
Final URL location of Response.

class requests.Request(method=None, url=None, headers=None, files=None, data=None,
params=None, auth=None, cookies=None, hooks=None)

A user-created Request object.

Used to prepare a PreparedRequest, which is sent to the server.

Parameters

• method – HTTP method to use.

• url – URL to send.

• headers – dictionary of headers to send.

• files – dictionary of {filename: fileobject} files to multipart upload.

• data – the body to attach the request. If a dictionary is provided, form-encoding will take
place.

• params – dictionary of URL parameters to append to the URL.

• auth – Auth handler or (user, pass) tuple.

• cookies – dictionary or CookieJar of cookies to attach to this request.

• hooks – dictionary of callback hooks, for internal usage.

Usage:

>>> import requests
>>> req = requests.Request('GET', 'http://httpbin.org/get')
>>> req.prepare()
<PreparedRequest [GET]>

deregister_hook(event, hook)
Deregister a previously registered hook. Returns True if the hook existed, False if not.

prepare()
Constructs a PreparedRequest for transmission and returns it.

register_hook(event, hook)
Properly register a hook.

class requests.PreparedRequest
The fully mutable PreparedRequest object, containing the exact bytes that will be sent to the server.

Generated from either a Request object or manually.

Usage:

60 Chapter 5. API Documentation

Requests Documentation, Release 2.2.1

>>> import requests
>>> req = requests.Request('GET', 'http://httpbin.org/get')
>>> r = req.prepare()
<PreparedRequest [GET]>

>>> s = requests.Session()
>>> s.send(r)
<Response [200]>

body = None
request body to send to the server.

deregister_hook(event, hook)
Deregister a previously registered hook. Returns True if the hook existed, False if not.

headers = None
dictionary of HTTP headers.

hooks = None
dictionary of callback hooks, for internal usage.

method = None
HTTP verb to send to the server.

path_url
Build the path URL to use.

prepare(method=None, url=None, headers=None, files=None, data=None, params=None,
auth=None, cookies=None, hooks=None)

Prepares the entire request with the given parameters.

prepare_auth(auth, url=’‘)
Prepares the given HTTP auth data.

prepare_body(data, files)
Prepares the given HTTP body data.

prepare_cookies(cookies)
Prepares the given HTTP cookie data.

prepare_headers(headers)
Prepares the given HTTP headers.

prepare_hooks(hooks)
Prepares the given hooks.

prepare_method(method)
Prepares the given HTTP method.

prepare_url(url, params)
Prepares the given HTTP URL.

register_hook(event, hook)
Properly register a hook.

url = None
HTTP URL to send the request to.

class requests.Session
A Requests session.

Provides cookie persistence, connection-pooling, and configuration.

Basic Usage:

5.1. Developer Interface 61

Requests Documentation, Release 2.2.1

>>> import requests
>>> s = requests.Session()
>>> s.get('http://httpbin.org/get')
200

auth = None
Default Authentication tuple or object to attach to Request.

cert = None
SSL certificate default.

close()
Closes all adapters and as such the session

cookies = None
A CookieJar containing all currently outstanding cookies set on this session. By default it is a
RequestsCookieJar, but may be any other cookielib.CookieJar compatible object.

delete(url, **kwargs)
Sends a DELETE request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

get(url, **kwargs)
Sends a GET request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

get_adapter(url)
Returns the appropriate connnection adapter for the given URL.

head(url, **kwargs)
Sends a HEAD request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

headers = None
A case-insensitive dictionary of headers to be sent on each Request sent from this Session.

hooks = None
Event-handling hooks.

max_redirects = None
Maximum number of redirects allowed. If the request exceeds this limit, a TooManyRedirects excep-
tion is raised.

mount(prefix, adapter)
Registers a connection adapter to a prefix.

Adapters are sorted in descending order by key length.

options(url, **kwargs)
Sends a OPTIONS request. Returns Response object.

62 Chapter 5. API Documentation

Requests Documentation, Release 2.2.1

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

params = None
Dictionary of querystring data to attach to each Request. The dictionary values may be lists for repre-
senting multivalued query parameters.

patch(url, data=None, **kwargs)
Sends a PATCH request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• **kwargs – Optional arguments that request takes.

post(url, data=None, **kwargs)
Sends a POST request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• **kwargs – Optional arguments that request takes.

prepare_request(request)
Constructs a PreparedRequest for transmission and returns it. The PreparedRequest has settings
merged from the Request instance and those of the Session.

Parameters request – Request instance to prepare with this session’s settings.

proxies = None
Dictionary mapping protocol to the URL of the proxy (e.g. {‘http’: ‘foo.bar:3128’}) to be used on each
Request.

put(url, data=None, **kwargs)
Sends a PUT request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• **kwargs – Optional arguments that request takes.

request(method, url, params=None, data=None, headers=None, cookies=None, files=None,
auth=None, timeout=None, allow_redirects=True, proxies=None, hooks=None,
stream=None, verify=None, cert=None)

Constructs a Request, prepares it and sends it. Returns Response object.

Parameters

• method – method for the new Request object.

• url – URL for the new Request object.

5.1. Developer Interface 63

Requests Documentation, Release 2.2.1

• params – (optional) Dictionary or bytes to be sent in the query string for the Request.

• data – (optional) Dictionary or bytes to send in the body of the Request.

• headers – (optional) Dictionary of HTTP Headers to send with the Request.

• cookies – (optional) Dict or CookieJar object to send with the Request.

• files – (optional) Dictionary of ‘filename’: file-like-objects for multipart encoding up-
load.

• auth – (optional) Auth tuple or callable to enable Basic/Digest/Custom HTTP Auth.

• timeout – (optional) Float describing the timeout of the request.

• allow_redirects – (optional) Boolean. Set to True by default.

• proxies – (optional) Dictionary mapping protocol to the URL of the proxy.

• stream – (optional) whether to immediately download the response content. Defaults to
False.

• verify – (optional) if True, the SSL cert will be verified. A CA_BUNDLE path can
also be provided.

• cert – (optional) if String, path to ssl client cert file (.pem). If Tuple, (‘cert’, ‘key’) pair.

resolve_redirects(resp, req, stream=False, timeout=None, verify=True, cert=None, prox-
ies=None)

Receives a Response. Returns a generator of Responses.

send(request, **kwargs)
Send a given PreparedRequest.

stream = None
Stream response content default.

trust_env = None
Should we trust the environment?

verify = None
SSL Verification default.

class requests.adapters.HTTPAdapter(pool_connections=10, pool_maxsize=10, max_retries=0,
pool_block=False)

The built-in HTTP Adapter for urllib3.

Provides a general-case interface for Requests sessions to contact HTTP and HTTPS urls by implementing the
Transport Adapter interface. This class will usually be created by the Session class under the covers.

Parameters

• pool_connections – The number of urllib3 connection pools to cache.

• pool_maxsize – The maximum number of connections to save in the pool.

• max_retries (int) – The maximum number of retries each connection should attempt.
Note, this applies only to failed connections and timeouts, never to requests where the server
returns a response.

• pool_block – Whether the connection pool should block for connections.

Usage:

64 Chapter 5. API Documentation

Requests Documentation, Release 2.2.1

>>> import requests
>>> s = requests.Session()
>>> a = requests.adapters.HTTPAdapter(max_retries=3)
>>> s.mount('http://', a)

add_headers(request, **kwargs)
Add any headers needed by the connection. As of v2.0 this does nothing by default, but is left for overriding
by users that subclass the HTTPAdapter.

This should not be called from user code, and is only exposed for use when subclassing the
HTTPAdapter.

Parameters

• request – The PreparedRequest to add headers to.

• kwargs – The keyword arguments from the call to send().

build_response(req, resp)
Builds a Response object from a urllib3 response. This should not be called from user code, and is only
exposed for use when subclassing the HTTPAdapter

Parameters

• req – The PreparedRequest used to generate the response.

• resp – The urllib3 response object.

cert_verify(conn, url, verify, cert)
Verify a SSL certificate. This method should not be called from user code, and is only exposed for use
when subclassing the HTTPAdapter.

Parameters

• conn – The urllib3 connection object associated with the cert.

• url – The requested URL.

• verify – Whether we should actually verify the certificate.

• cert – The SSL certificate to verify.

close()
Disposes of any internal state.

Currently, this just closes the PoolManager, which closes pooled connections.

get_connection(url, proxies=None)
Returns a urllib3 connection for the given URL. This should not be called from user code, and is only
exposed for use when subclassing the HTTPAdapter.

Parameters

• url – The URL to connect to.

• proxies – (optional) A Requests-style dictionary of proxies used on this request.

init_poolmanager(connections, maxsize, block=False)
Initializes a urllib3 PoolManager. This method should not be called from user code, and is only exposed
for use when subclassing the HTTPAdapter.

Parameters

• connections – The number of urllib3 connection pools to cache.

• maxsize – The maximum number of connections to save in the pool.

5.1. Developer Interface 65

Requests Documentation, Release 2.2.1

• block – Block when no free connections are available.

proxy_headers(proxy)
Returns a dictionary of the headers to add to any request sent through a proxy. This works with urllib3
magic to ensure that they are correctly sent to the proxy, rather than in a tunnelled request if CONNECT
is being used.

This should not be called from user code, and is only exposed for use when subclassing the
HTTPAdapter.

Parameters

• proxies – The url of the proxy being used for this request.

• kwargs – Optional additional keyword arguments.

request_url(request, proxies)
Obtain the url to use when making the final request.

If the message is being sent through a HTTP proxy, the full URL has to be used. Otherwise, we should
only use the path portion of the URL.

This should not be called from user code, and is only exposed for use when subclassing the
HTTPAdapter.

Parameters

• request – The PreparedRequest being sent.

• proxies – A dictionary of schemes to proxy URLs.

send(request, stream=False, timeout=None, verify=True, cert=None, proxies=None)
Sends PreparedRequest object. Returns Response object.

Parameters

• request – The PreparedRequest being sent.

• stream – (optional) Whether to stream the request content.

• timeout – (optional) The timeout on the request.

• verify – (optional) Whether to verify SSL certificates.

• cert – (optional) Any user-provided SSL certificate to be trusted.

• proxies – (optional) The proxies dictionary to apply to the request.

5.1.3 Migrating to 1.x

This section details the main differences between 0.x and 1.x and is meant to ease the pain of upgrading.

API Changes

• Response.json is now a callable and not a property of a response.

import requests
r = requests.get('https://github.com/timeline.json')
r.json() # This *call* raises an exception if JSON decoding fails

• The SessionAPI has changed. Sessions objects no longer take parameters. Session is also now capitalized,
but it can still be instantiated with a lowercase session for backwards compatibility.

66 Chapter 5. API Documentation

Requests Documentation, Release 2.2.1

s = requests.Session() # formerly, session took parameters
s.auth = auth
s.headers.update(headers)
r = s.get('http://httpbin.org/headers')

• All request hooks have been removed except ‘response’.

• Authentication helpers have been broken out into separate modules. See requests-oauthlib and requests-
kerberos.

• The parameter for streaming requests was changed from prefetch to stream and the logic was inverted. In
addition, stream is now required for raw response reading.

in 0.x, passing prefetch=False would accomplish the same thing
r = requests.get('https://github.com/timeline.json', stream=True)
for chunk in r.iter_content(8192):

...

• The config parameter to the requests method has been removed. Some of these options are now configured
on a Session such as keep-alive and maximum number of redirects. The verbosity option should be handled
by configuring logging.

import requests
import logging

these two lines enable debugging at httplib level (requests->urllib3->httplib)
you will see the REQUEST, including HEADERS and DATA, and RESPONSE with HEADERS but without DATA.
the only thing missing will be the response.body which is not logged.
import httplib
httplib.HTTPConnection.debuglevel = 1

logging.basicConfig() # you need to initialize logging, otherwise you will not see anything from requests
logging.getLogger().setLevel(logging.DEBUG)
requests_log = logging.getLogger("requests.packages.urllib3")
requests_log.setLevel(logging.DEBUG)
requests_log.propagate = True

requests.get('http://httpbin.org/headers')

Licensing

One key difference that has nothing to do with the API is a change in the license from the ISC license to the Apache
2.0 license. The Apache 2.0 license ensures that contributions to Requests are also covered by the Apache 2.0 license.

5.1.4 Migrating to 2.x

Compared with the 1.0 release, there were relatively few backwards incompatible changes, but there are still a few
issues to be aware of with this major release.

For more details on the changes in this release including new APIs, links to the relevant GitHub issues and some of
the bug fixes, read Cory’s blog on the subject.

API Changes

• There were a couple changes to how Requests handles exceptions. RequestException is now a subclass
of IOError rather than RuntimeError as that more accurately categorizes the type of error. In addition, an

5.1. Developer Interface 67

https://github.com/requests/requests-oauthlib
https://github.com/requests/requests-kerberos
https://github.com/requests/requests-kerberos
http://opensource.org/licenses/ISC
http://opensource.org/licenses/Apache-2.0
http://opensource.org/licenses/Apache-2.0
http://lukasa.co.uk/2013/09/Requests_20/

Requests Documentation, Release 2.2.1

invalid URL escape sequence now raises a subclass of RequestException rather than a ValueError.

requests.get('http://%zz/') # raises requests.exceptions.InvalidURL

Lastly, httplib.IncompleteRead exceptions caused by incorrect chunked encoding will now raise a
Requests ChunkedEncodingError instead.

• The proxy API has changed slightly. The scheme for a proxy URL is now required.

proxies = {
"http": "10.10.1.10:3128", # use http://10.10.1.10:3128 instead

}

In requests 1.x, this was legal, in requests 2.x,
this raises requests.exceptions.MissingSchema
requests.get("http://example.org", proxies=proxies)

Behavioral Changes

• Keys in the headers dictionary are now native strings on all Python versions, i.e. bytestrings on Python 2 and
unicode on Python 3. If the keys are not native strings (unicode on Python2 or bytestrings on Python 3) they
will be converted to the native string type assuming UTF-8 encoding.

• Timeouts behave slightly differently. On streaming requests, the timeout only applies to the connection attempt.
On regular requests, the timeout is applied to the connection process and downloading the full body.

tarball_url = 'https://github.com/kennethreitz/requests/tarball/master'

One second timeout for the connection attempt
Unlimited time to download the tarball
r = requests.get(tarball_url, stream=True, timeout=1)

One second timeout for the connection attempt
Another full second timeout to download the tarball
r = requests.get(tarball_url, timeout=1)

68 Chapter 5. API Documentation

CHAPTER 6

Contributor Guide

If you want to contribute to the project, this part of the documentation is for you.

6.1 Development Philosophy

Requests is an open but opinionated library, created by an open but opinionated developer.

6.1.1 Benevolent Dictator

Kenneth Reitz is the BDFL. He has final say in any decision related to Requests.

6.1.2 Values

• Simplicity is always better than functionality.

• Listen to everyone, then disregard it.

• The API is all that matters. Everything else is secondary.

• Fit the 90% use-case. Ignore the nay-sayers.

6.1.3 Semantic Versioning

For many years, the open source community has been plagued with version number dystonia. Numbers vary so greatly
from project to project, they are practically meaningless.

Requests uses Semantic Versioning. This specification seeks to put an end to this madness with a small set of practical
guidelines for you and your colleagues to use in your next project.

6.1.4 Standard Library?

Requests has no active plans to be included in the standard library. This decision has been discussed at length with
Guido as well as numerous core developers.

Essentially, the standard library is where a library goes to die. It is appropriate for a module to be included when active
development is no longer necessary.

Requests just reached v1.0.0. This huge milestone marks a major step in the right direction.

69

http://kennethreitz.org
http://semver.org

Requests Documentation, Release 2.2.1

6.1.5 Linux Distro Packages

Distributions have been made for many Linux repositories, including: Ubuntu, Debian, RHEL, and Arch.

These distributions are sometimes divergent forks, or are otherwise not kept up-to-date with the latest code and bug-
fixes. PyPI (and its mirrors) and GitHub are the official distribution sources; alternatives are not supported by the
Requests project.

6.2 How to Help

Requests is under active development, and contributions are more than welcome!

1. Check for open issues or open a fresh issue to start a discussion around a bug. There is a Contributor Friendly
tag for issues that should be ideal for people who are not very familiar with the codebase yet.

2. Fork the repository on GitHub and start making your changes to a new branch.

3. Write a test which shows that the bug was fixed.

4. Send a pull request and bug the maintainer until it gets merged and published. :) Make sure to add yourself to
AUTHORS.

6.2.1 Feature Freeze

As of v1.0.0, Requests has now entered a feature freeze. Requests for new features and Pull Requests implementing
those features will not be accepted.

6.2.2 Development Dependencies

You’ll need to install py.test in order to run the Requests’ test suite:

$ pip install -r requirements.txt
$ invoke test
py.test
platform darwin -- Python 2.7.3 -- pytest-2.3.4
collected 25 items

test_requests.py
25 passed in 3.50 seconds

6.2.3 Runtime Environments

Requests currently supports the following versions of Python:

• Python 2.6

• Python 2.7

• Python 3.1

• Python 3.2

• Python 3.3

• PyPy 1.9

70 Chapter 6. Contributor Guide

https://github.com/kennethreitz/requests
https://github.com/kennethreitz/requests/blob/master/AUTHORS.rst

Requests Documentation, Release 2.2.1

Support for Python 3.1 and 3.2 may be dropped at any time.

Google App Engine will never be officially supported. Pull Requests for compatibility will be accepted, as long as
they don’t complicate the codebase.

6.2.4 Are you crazy?

• SPDY support would be awesome. No C extensions.

6.2.5 Downstream Repackaging

If you are repackaging Requests, please note that you must also redistribute the cacerts.pem file in order to get
correct SSL functionality.

6.3 Authors

Requests is written and maintained by Kenneth Reitz and various contributors:

6.3.1 Development Lead

• Kenneth Reitz <me@kennethreitz.com>

6.3.2 Urllib3

• Andrey Petrov <andrey.petrov@shazow.net>

6.3.3 Patches and Suggestions

• Various Pocoo Members

• Chris Adams

• Flavio Percoco Premoli

• Dj Gilcrease

• Justin Murphy

• Rob Madole

• Aram Dulyan

• Johannes Gorset

• (Megane Murayama)

• James Rowe

• Daniel Schauenberg

• Zbigniew Siciarz

• Daniele Tricoli ‘Eriol’

• Richard Boulton

6.3. Authors 71

mailto:me@kennethreitz.com
mailto:andrey.petrov@shazow.net

Requests Documentation, Release 2.2.1

• Miguel Olivares <miguel@moliware.com>

• Alberto Paro

• Jérémy Bethmont

• (Xu Pan)

• Tamás Gulácsi

• Rubén Abad

• Peter Manser

• Jeremy Selier

• Jens Diemer

• Alex <@alopatin>

• Tom Hogans <tomhsx@gmail.com>

• Armin Ronacher

• Shrikant Sharat Kandula

• Mikko Ohtamaa

• Den Shabalin

• Daniel Miller <danielm@vs-networks.com>

• Alejandro Giacometti

• Rick Mak

• Johan Bergström

• Josselin Jacquard

• Travis N. Vaught

• Fredrik Möllerstrand

• Daniel Hengeveld

• Dan Head

• Bruno Renié

• David Fischer

• Joseph McCullough

• Juergen Brendel

• Juan Riaza

• Ryan Kelly

• Rolando Espinoza La fuente

• Robert Gieseke

• Idan Gazit

• Ed Summers

• Chris Van Horne

• Christopher Davis

72 Chapter 6. Contributor Guide

mailto:miguel@moliware.com
mailto:tomhsx@gmail.com
mailto:danielm@vs-networks.com

Requests Documentation, Release 2.2.1

• Ori Livneh

• Jason Emerick

• Bryan Helmig

• Jonas Obrist

• Lucian Ursu

• Tom Moertel

• Frank Kumro Jr

• Chase Sterling

• Marty Alchin

• takluyver

• Ben Toews (mastahyeti)

• David Kemp

• Brendon Crawford

• Denis (Telofy)

• Cory Benfield (Lukasa)

• Matt Giuca

• Adam Tauber

• Honza Javorek

• Brendan Maguire <maguire.brendan@gmail.com>

• Chris Dary

• Danver Braganza <danverbraganza@gmail.com>

• Max Countryman

• Nick Chadwick

• Jonathan Drosdeck

• Jiri Machalek

• Steve Pulec

• Michael Kelly

• Michael Newman <newmaniese@gmail.com>

• Jonty Wareing <jonty@jonty.co.uk>

• Shivaram Lingamneni

• Miguel Turner

• Rohan Jain (crodjer)

• Justin Barber <barber.justin@gmail.com>

• Roman Haritonov <@reclosedev>

• Josh Imhoff <joshimhoff13@gmail.com>

• Arup Malakar <amalakar@gmail.com>

6.3. Authors 73

mailto:maguire.brendan@gmail.com
mailto:danverbraganza@gmail.com
mailto:newmaniese@gmail.com
mailto:jonty@jonty.co.uk
mailto:barber.justin@gmail.com
mailto:joshimhoff13@gmail.com
mailto:amalakar@gmail.com

Requests Documentation, Release 2.2.1

• Danilo Bargen (dbrgn)

• Torsten Landschoff

• Michael Holler (apotheos)

• Timnit Gebru

• Sarah Gonzalez

• Victoria Mo

• Leila Muhtasib

• Matthias Rahlf <matthias@webding.de>

• Jakub Roztocil <jakub@roztocil.name>

• Ian Cordasco <graffatcolmingov@gmail.com> @sigmavirus24

• Rhys Elsmore

• André Graf (dergraf)

• Stephen Zhuang (everbird)

• Martijn Pieters

• Jonatan Heyman

• David Bonner <dbonner@gmail.com> @rascalking

• Vinod Chandru

• Johnny Goodnow <j.goodnow29@gmail.com>

• Denis Ryzhkov <denisr@denisr.com>

• Wilfred Hughes <me@wilfred.me.uk> @dontYetKnow

• Dmitry Medvinsky <me@dmedvinsky.name>

• Bryce Boe <bbzbryce@gmail.com> @bboe

• Colin Dunklau <colin.dunklau@gmail.com> @cdunklau

• Bob Carroll <bob.carroll@alum.rit.edu> @rcarz

• Hugo Osvaldo Barrera <hugo@osvaldobarrera.com.ar> @hobarrera

• Łukasz Langa <lukasz@langa.pl> @llanga

• Dave Shawley <daveshawley@gmail.com>

• James Clarke (jam)

• Kevin Burke <kev@inburke.com>

• Flavio Curella

• David Pursehouse <david.pursehouse@gmail.com> @dpursehouse

• Jon Parise

• Alexander Karpinsky @homm86

• Marc Schlaich @schlamar

• Park Ilsu <daftonshady@gmail.com> @daftshady

• Matt Spitz @mattspitz

74 Chapter 6. Contributor Guide

mailto:matthias@webding.de
mailto:jakub@roztocil.name
mailto:graffatcolmingov@gmail.com
mailto:dbonner@gmail.com
mailto:j.goodnow29@gmail.com
mailto:denisr@denisr.com
mailto:me@wilfred.me.uk
mailto:me@dmedvinsky.name
mailto:bbzbryce@gmail.com
mailto:colin.dunklau@gmail.com
mailto:bob.carroll@alum.rit.edu
mailto:hugo@osvaldobarrera.com.ar
mailto:lukasz@langa.pl
mailto:daveshawley@gmail.com
mailto:kev@inburke.com
mailto:david.pursehouse@gmail.com
mailto:daftonshady@gmail.com

Requests Documentation, Release 2.2.1

• Vikram Oberoi @voberoi

• Can Ibanoglu <can.ibanoglu@gmail.com> @canibanoglu

• Thomas Weißschuh <thomas@t-8ch.de> @t-8ch

• Jayson Vantuyl <jayson@aggressive.ly> @kagato

• Pengfei.X <pengphy@gmail.com>

• Kamil Madac <kamil.madac@gmail.com>

• Michael Becker <mike@beckerfuffle.com> @beckerfuffle

• Erik Wickstrom <erik@erikwickstrom.com> @erikwickstrom

• @podshumok

6.3. Authors 75

mailto:can.ibanoglu@gmail.com
mailto:thomas@t-8ch.de
mailto:jayson@aggressive.ly
mailto:pengphy@gmail.com
mailto:kamil.madac@gmail.com
mailto:mike@beckerfuffle.com
mailto:erik@erikwickstrom.com

Requests Documentation, Release 2.2.1

76 Chapter 6. Contributor Guide

Python Module Index

r
requests, 49
requests.models, 9

77

Requests Documentation, Release 2.2.1

78 Python Module Index

Index

A
add_dict_to_cookiejar() (in module requests.utils), 58
add_headers() (requests.adapters.HTTPAdapter method),

56, 65
apparent_encoding (requests.Response attribute), 51, 59
auth (requests.Session attribute), 53, 62

B
body (requests.PreparedRequest attribute), 61
build_response() (requests.adapters.HTTPAdapter

method), 56, 65

C
cert (requests.Session attribute), 53, 62
cert_verify() (requests.adapters.HTTPAdapter method),

56, 65
close() (requests.adapters.HTTPAdapter method), 56, 65
close() (requests.Response method), 51, 59
close() (requests.Session method), 53, 62
codes() (in module requests), 58
ConnectionError, 57
content (requests.Response attribute), 51, 59
cookiejar_from_dict() (in module requests.utils), 58
cookies (requests.Response attribute), 51, 59
cookies (requests.Session attribute), 53, 62

D
delete() (in module requests), 50
delete() (requests.Session method), 53, 62
deregister_hook() (requests.PreparedRequest method), 61
deregister_hook() (requests.Request method), 51, 60
dict_from_cookiejar() (in module requests.utils), 58

E
elapsed (requests.Response attribute), 51, 59
encoding (requests.Response attribute), 51, 59

G
get() (in module requests), 50
get() (requests.Session method), 53, 62

get_adapter() (requests.Session method), 53, 62
get_connection() (requests.adapters.HTTPAdapter

method), 56, 65
get_encoding_from_headers() (in module requests.utils),

58
get_encodings_from_content() (in module requests.utils),

58
get_unicode_from_response() (in module requests.utils),

58

H
head() (in module requests), 50
head() (requests.Session method), 53, 62
headers (requests.PreparedRequest attribute), 61
headers (requests.Response attribute), 52, 59
headers (requests.Session attribute), 53, 62
history (requests.Response attribute), 52, 59
hooks (requests.PreparedRequest attribute), 61
hooks (requests.Session attribute), 53, 62
HTTPAdapter (class in requests.adapters), 55, 64
HTTPError, 57

I
init_poolmanager() (requests.adapters.HTTPAdapter

method), 56, 65
iter_content() (requests.Response method), 52, 59
iter_lines() (requests.Response method), 52, 59

J
json() (requests.Response method), 52, 59

L
links (requests.Response attribute), 52, 59

M
max_redirects (requests.Session attribute), 53, 62
method (requests.PreparedRequest attribute), 61
mount() (requests.Session method), 53, 62

O
options() (requests.Session method), 53, 62

79

Requests Documentation, Release 2.2.1

P
params (requests.Session attribute), 54, 63
patch() (in module requests), 50
patch() (requests.Session method), 54, 63
path_url (requests.PreparedRequest attribute), 61
post() (in module requests), 50
post() (requests.Session method), 54, 63
prepare() (requests.PreparedRequest method), 61
prepare() (requests.Request method), 51, 60
prepare_auth() (requests.PreparedRequest method), 61
prepare_body() (requests.PreparedRequest method), 61
prepare_cookies() (requests.PreparedRequest method),

61
prepare_headers() (requests.PreparedRequest method),

61
prepare_hooks() (requests.PreparedRequest method), 61
prepare_method() (requests.PreparedRequest method), 61
prepare_request() (requests.Session method), 54, 63
prepare_url() (requests.PreparedRequest method), 61
PreparedRequest (class in requests), 60
proxies (requests.Session attribute), 54, 63
proxy_headers() (requests.adapters.HTTPAdapter

method), 57, 66
put() (in module requests), 50
put() (requests.Session method), 54, 63
Python Enhancement Proposals

PEP 20, 7

R
raise_for_status() (requests.Response method), 52, 59
raw (requests.Response attribute), 52, 59
register_hook() (requests.PreparedRequest method), 61
register_hook() (requests.Request method), 51, 60
Request (class in requests), 51, 60
request() (in module requests), 49
request() (requests.Session method), 54, 63
request_url() (requests.adapters.HTTPAdapter method),

57, 66
RequestException, 57
requests (module), 49
requests.models (module), 9
resolve_redirects() (requests.Session method), 55, 64
Response (class in requests), 51, 59

S
send() (requests.adapters.HTTPAdapter method), 57, 66
send() (requests.Session method), 55, 64
Session (class in requests), 52, 61
status_code (requests.Response attribute), 52, 59
stream (requests.Session attribute), 55, 64

T
text (requests.Response attribute), 52, 60

TooManyRedirects, 57
trust_env (requests.Session attribute), 55, 64

U
url (requests.PreparedRequest attribute), 61
url (requests.Response attribute), 52, 60
URLRequired, 57

V
verify (requests.Session attribute), 55, 64

80 Index

	Testimonials
	Feature Support
	User Guide
	Introduction
	Installation
	Quickstart
	Advanced Usage
	Authentication

	Community Guide
	Frequently Asked Questions
	Integrations
	Articles & Talks
	Support
	Community Updates
	Software Updates

	API Documentation
	Developer Interface

	Contributor Guide
	Development Philosophy
	How to Help
	Authors

	Python Module Index

